
NEURAL NETWORK SEMANTICS

Caleb Schultz Kisby

Submitted to the faculty of the University Graduate School

in partial fulfillment of the requirements

for the degree

Doctor of Philosophy

in the School of Informatics, Computing, and Engineering,

Indiana University

May 23, 2025



Accepted by the Graduate Faculty, Indiana University, in partial fulfillment of the requirements for

the degree of Doctor of Philosophy.

Doctoral Committee

Lawrence S. Moss, PhD (Co-advisor)

Saúl A. Blanco, PhD (Co-advisor)

David B. Leake, PhD

Chung-chieh Shan, PhD

May 23, 2025

ii



Copyright  2025

Caleb Schultz Kisby

iii



[Dedication page]



Acknowledgments

[Write the acknowledgments page]

v



Preface

[Write the preface, which includes the different conferences + workshops this work was pre-

sented at.]



Caleb Schultz Kisby

Neural Network Semantics

sdfafsfl;asjdfa;lkjf l;sdaj fl;asjf kl;asjfd ;lasjf ;lkasjf ;klsajf l;ksaj f;lksajf;klasj f;klsaj f;klasj

flk;asj fkl;saj fl;ksaj f;lkjs a;flkj sa;lkfj s;klafj ;slakjf ;lasfj

References List:

History of neural network semantics. [44] [7] [38] [39] [17] [40] [34] [35] [28] [?] [29]

Social network semantics. [8]

Dynamic logics for learning. [11] [9] [10]

Dynamic epistemic logic; Belief revision. [69] [66] [71] [12] [13] [56] [36] [70] [68] [14]

General neuro-symbolic AI. [5] [60] [15] [31] [20] [26] [6] [27] [43] [19]

Neural network verification. [3]

AI/neural network Alignment.

Neural networks as automata. [46] [64] [48] [47]

Neural network descriptive complexity. [33] [42] [21]

Neural networks & Category theory.

General conditional logic. [37]

General modal logic. [49] [55]

Classic papers in AI. [32] [63] [30] [54] [61] [45] [59] [72] [65] [62]

General TSC/mathematics. [2] [57]

General cognitive science. [51]

Systems and frameworks. [50] [23] [1]

[Note to self so I don't forget—use new-dpage and new-dpage* commands! (follow them with no-

indent!)]

vii



Lawrence S. Moss, PhD (Co-advisor)

Saúl A. Blanco, PhD (Co-advisor)

David B. Leake, PhD

Chung-chieh Shan, PhD

May 23, 2025

viii



Contents

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Background: Defeasible Reasoning in Artificial Intelligence . . . . . . . . . . . . . . . . . . 5

1 Defeasible Reasoning in Conditional Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Defeasible Reasoning in Modal Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Dynamic Epistemic Logic and Belief Revision . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4 Defeasible Reasoning in Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Neural Network Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Neural Network Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Properties of Clos, Reach, and Reach↓ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4 Neural Network Semantics for Conditional Logic . . . . . . . . . . . . . . . . . . . . . . . . . 22

5 Neural Network Semantics for the Modal Logic of C . . . . . . . . . . . . . . . . . . . . . . . 24

6 Proof System and Soundness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

7 Reflections on Neural Network Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Interlude: A History and Survey of Neural Network Semantics . . . . . . . . . . . . . . . . 32

Neural Network Model Constructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

ix



2 The Canonical Neural Network Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3 Filtration: Building a Finite Neural Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4 Model Building and Completeness Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5 The Modelling Power of Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6 Reflections on Model Building and Interpretability . . . . . . . . . . . . . . . . . . . . . . . . 57

Dynamic Update in Neural Network Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . 58

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2 Hebbian Learning: A Simple Neural Network Update Policy . . . . . . . . . . . . . . . . . . 59

3 Properties of Hebb and Hebb∗ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4 Neural Network Semantics for Hebbian Update . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5 A Complete Logic of Iterated Hebbian Update . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6 Reflections on Neural Network Alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Neural Network Semantics for First-Order Logic . . . . . . . . . . . . . . . . . . . . . . . . . 73

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

2 Lifting a Modal Logic to First-Order Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3 Neural Network Semantics for First-Order Logic . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4 Axioms, Soundness, and Frame Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5 Reflections on First-Order Reasoning using Neural Networks . . . . . . . . . . . . . . . . . . 81

Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

1 Open Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Appendix A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

A.1 Appendix for Section 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

A.2 Appendix A2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

A.3 Appendix A3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92



Chapter 1

Introduction

In the last 15 years, modern machine learning systems have achieved unprecedented success in

learning from data with little human guidance. Consider, for example, large language models such

as Llama and GPT [1; 23; 72], which have taken the world by storm with their ability to learn to

converse in English solely from unstructured text data scraped from the Internet. Or, consider

AlphaGo [62], which learned to play Go at a human expert level by repeatedly playing against

itself. These breakthroughs in machine learning are in large part thanks to the widespread use of

neural networks—brain-inspired computational models that are flexible and excel at learning from

unstructured data.

But the danger of neural networks is that they come with no guarantees of safety, reliability,

or correctness. Neural systems can carry all sorts of misconceptions, make silly logical mistakes,

and are quite happy to spread disinformation [25; 41; 52; 65]. Diagnosing, correcting, and under-

standing the source of these errors is not feasible, so in practice neural networks are treated as

‘black-boxes’ [cite]. In this sense, neural networks lack transparency and interpretability.

How can we “open the black box” to better understand, reason about, and guide the behavior

of neural networks? The field of neuro-symbolic AI has emerged to answer this question [5; 15;

60]. Consider symbolic systems—logics—which have been used in theoretical computer science

to reason about and guide the behavior of computational systems. Historically, logics were used

to model intelligent behavior prior to the rapid growth of neural network systems [cite]. Whereas

neural networks are not easily interpreted, logics provide transparent access to their reasoning via

a human-interpretable language and compositional semantics. But also unlike neural networks,

traditional logics fail to model flexible learning or update. (This is known as the frame problem in

AI [22; 45; 61]).

The primary goal of neuro-symbolic AI is to combine the complementary strengths of neural

networks and logic, retaining the advantages of both. There are now many distinct proposals for
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neuro-symbolic systems—to many to count! To give a short but representative list, these systems

include Logic Tensor Networks [6], Distributed Alignment Search [27], DeepProbLog [43], Logic

Explained Networks [19], neural networks as automata [46; 48; 73], and neural network fibring

[26]. These systems and algorithms are disparate, and there is little agreement among them on how

to interface neural and symbolic systems. Together these proposals form a scattered picture, and

some unifying perspective or theory is needed. In the preface to a recent neuro-symbolic survey

book [15], Frank van Harmelen writes:

What are the possible interactions between knowledge and learning? Can reasoning

be used as a symbolic prior for learning … Can symbolic constraints be enforced

on data-driven systems to make them safer? Or less biased? Or can, vice versa,

learning be used to yield symbolic knowledge? … And how to avoid the inevitable

bias seeping from the data into the resulting knowledge base? … neuro-symbolic

systems currently lack a theory that even begins to ask these questions, let

alone answer them.

In this dissertation, I will explore a class of neuro-symbolic systems that tightly couple logic

with neural network dynamics. This may seem like adding yet another neuro-symbolic proposal

to the pile. But in fact, the point of this work is to develop and promote a broader perspective that

deepens our understanding of well-known neuro-symbolic systems and informs the development

of neuro-symbolic interfaces in the future.

Here is the perspective I'm promoting: Neural networks can be thought of as models for

formal logic, i.e., logics can be interpreted directly on neural networks. Speaking more techni-

cally, logical operators such as conditionals ⇒, modalities □, dynamic updates [P], and quantifiers

∀x can be interpreted by semantics that refer to, e.g., the input-output behavior, signal propagation,

or update of weights in a neural network. I will soon show that many neuro-symbolic systems can

be considered from this point of view; I will call any specification of formal semantics that falls

under this umbrella “neural network semantics.”

In previous work, the input-output behavior of (binary) neural networks was shown to be an



appropriate semantics for defeasible conditionals 𝜑 ⇒ 𝜓 (read “typically, if 𝜑 then 𝜓”) [7; 17;

20; 38; 39]. In this dissertation, I develop this same idea in more expressive logical contexts,

including modal logic [16; 67], Dynamic Epistemic Logic (DEL) [68; 70; 71], and first-order logic

(FOL) [24]. I will focus on three, highly nonstandard, logics that are interpreted on binary neural

networks:

1. A defeasible modal logic whose central modality C𝜑 is interpreted via the closure (or for-

ward propagation) of the signal 𝜑 in a neural network. (Chapters 3 and 4)

2. A DEL whose update operator [P] is interpreted as Hebbian update (on input P) [32], a

simple neural network learning policy that changes weights according to the rule “neurons

that fire together wire together.” I will consider a logic of single-step Hebbian update, as

well as a logic of iterated Hebbian update. (Chapter 5)

3. A defeasible FOL whose central quantifier ∀x𝜑 is interpreted via the closure (or forward

propagation) of the signal 𝜑 in a specially-designed neural network that uses variable assign-

ments in place of neurons. (Chapter 6)

As a logician, I will take each of these semantics seriously. I will develop them by mathematically

proving formal logical results, including soundness, completeness, expressivity, and frame corre-

spondence theorems. These may seem like results that merely satisfy a logician's curiosity. But

my point is that, in the context of neural network semantics, these theorems enable us to directly

answer fundamental questions about neural network inference, learning, and neuro-symbolic inter-

faces. Here is an explicit list of questions this perspective helps us answer, along with the chapter

in which I answer them:

• What algebraic properties hold for neural network inference? Can we design an expressive

logic that can be used to formally verify these properties? (Chapter 3)

• Can we build a neural network that obeys a given set of constraints on its inference (stated

as formulas in an expressive logic)? (Chapter 4)

• How powerful are neural network models, when compared to other classes of models?

What kinds of models can neural nets simulate? And vice-versa, what kind of models can
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be simulated by neural nets? (Chapter 4)

• What algebraic properties hold for neural network learning policies? Can we design a

dynamic logic that can be used to formally verify properties of neural network learning?

(Chapter 5)

• In general, can we build a neural network that obeys a set of constraints on its inference

before and after learning takes place? Note: This is one of the keys to the AI Alignment

problem. (Chapter 5)

• Can we design a neuro-symbolic system that supports reasoning in full first-order logic?

What kinds of neural network properties guarantee the soundness of FOL axioms? (Chapter

6)

In summary, I will defend the following thesis statement:

Thesis Statement. Neural networks can be treated as a class of models in formal logic, where

logics are interpreted directly on the neural net (“neural network semantics”). By developing this

idea in richer logical contexts, we are able to answer fundamental questions about neural network

inference, learning, and neuro-symbolic interfaces in general.



Chapter 2

Background: Defeasible Reasoning in Artificial Intelligence

The connection between neural networks and formal logic begins with defeasible reasoning

(aka nonmonotonic reasoning, or reasoning by default). In standard treatments of logic, the facts

you infer are non-revocable, i.e., they cannot be withdrawn in light of new information. But we

live in a world of change, partial information, and exceptions—in order to effectively reason, an

agent must jump to conclusions about what is “normally” or “plausibly” the case, and be ready

to withdraw these inferences. For these reasons, defeasible reasoning is a central to a theoretical

understanding of artificially intelligent agents.

Here's a classic example: If you know Tweety is a bird, you should conclude (assuming we're in

a “normal” situation) that Tweety flies. But if you then discover that Tweety is a penguin, you must

retract that conclusion. The standard material implication fails to model this: If Tweety→penguin,

penguin→bird, and bird→flies we must conclude that Tweety flies.

In this chapter, I will give a tour of many different ways to model defeasible reasoning in formal

logic. I will focus on the “preferential” or “plausibility” approach to defeasible reasoning, which

branches from the classic papers [37] and [cite Shoham 1988]. First, I will present the standard

plausibility semantics for conditional logics (where 𝜑 ⇒𝜓 expresses “typically, 𝜑 are 𝜓”). Then

I will discuss many different ways to transfer these semantics to more expressive modal logics.

I will present the logic of C𝜑 (“the current state is the best one where 𝜑 holds”), which forms

the backbone of my work connecting neural networks and logic. Finally, I will introduce neural

networks, and discuss how they may be seen as models of defeasible reasoning as well. This will

set us up for the central plot of my thesis: Developing a neural network semantics for the logic of

C𝜑.

1 Defeasible Reasoning in Conditional Logic
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I will now present the standard way to model nonmonotonic inference in conditional logic,

in the KLM tradition [37]. The language is stratified—sentences are conditionals 𝜑 ⇒ 𝜓, where

𝜑,𝜓 ∈Lprop are propositional formulas connected by ¬, ∧, → in the usual way. Sentences 𝜑 ⇒ 𝜓

cannot be nested within each other, nor within propositional formulas. This odd feature is due to

the original conception in [37] that 𝜑 ⇒ 𝜓 specify inference rules, but are not themselves propo-

sitions. The intended meaning of 𝜑⇒𝜓 is “typically (normally), 𝜑 are 𝜓”, e.g., bird⇒flies reads

“typically, birds fly.”

Kraus, Lehmann, and Magidor use the following models to interpret these conditional sen-

tences. I will be moving on pretty quickly to modal logic syntax and semantics, so I won't dwell

on these models too long. Let W be an underlying set of worlds (propositional valuations) for Lprop

(not necessarily the set of all worlds for Lprop).

Definition 1.1. A cumulative-ordered model isM= //S, l,≺//, where

• S is a nonempty set of states

• l:S→P(W)− {∅} (a labelling of states)

• ≺:S ×S (the plausibility order, or preference relation)

The plausibility order ≺ is required to be a strict order relation (irreflexive and transitive) sat-

isfying the Smoothness Condition (which I will state shortly). S1 ≺ S2 intuitively means that the

agent considers the state S1 ∈S to be more plausible, or more normal, than S2 ∈S. In order to

reason about the most plausible (normal) states, we can look at the ≺-minimal states. Formally,

each cumulative-ordered model determines a function best≺:S→S

best≺(S)={w∈ l(S) ∣ For all u∈ l(S),¬u≺w}

For propositional formulas 𝜑 ∈Lprop, ⟦𝜑⟧ = {S ∈S ∣ w ⊧ 𝜑 for all w ∈ l(S)}, i.e., the set of states

where 𝜑 is true everywhere. I said before that ≺ must satisfy the Smoothness Condition [37]—this

condition says that for any propositional formula 𝜑 ∈Lprop, ⟦𝜑⟧ has no infinitely descending ≺-

chains, i.e., every non-empty ⟦𝜑⟧ has at least one minimal element.

Postulate 1.2. For all cumulative-ordered modelsM, states S∈S, and all 𝜑∈Lprop, if S∈⟦𝜑⟧ then

either S∈best≺(⟦𝜑⟧), or there is some S′≺S better than S that is the best, i.e. S′∈best≺(⟦𝜑⟧).



I can now give the KLM intepretation of conditional sentences:

M⊧𝜑⇒𝜓 iff best≺(⟦𝜑⟧)⊆⟦𝜓⟧

That is, in the most plausible (normal) states where 𝜑 holds, 𝜓 holds, which was our intended

reading. There is a lot more to say about conditional logics like these (expressivity, proof sys-

tems, soundness and completeness, their rich history), but I must move on. I will conclude with

an example demonstrating that these semantics do in fact resolve our earlier issue with Tweety the

penguin.

Example 1.3. [Give an example of these semantics successfully modeling defeasible reasoning.

Maybe the Tweety example?]

2 Defeasible Reasoning in Modal Logic

The inability to nest conditionals 𝜑⇒𝜓 makes conditional logics somewhat flat and inexpres-

sive. Additionally, 𝜑⇒𝜓 only allows us to refer to the plausibility of the premise 𝜑, and not the

antecedent 𝜓. For example, the following sentences are not expressible in the conditional language

above:

• If birds typically fly, then Tweety does.

• The car normally drives, but the check engine light is always on.

• This was not your typical criminal.

• If this isn't normal, I don't know what is.

We can overcome this by transferring the main ideas of the semantics to a more expressive lan-

guage—in particular, to modal logics. [is there anything more I need to say here to motivate the

reader?]

2.1 A Brief Crash Course in Modal Logic

Let's briefly introduce the basics of modal logic. [cite a standard modal logic text or two!]

A modal logic extends propositional logic with “modal formulas” □𝜑 and ⋄𝜑 (□𝜑 is read “it is
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necessary that 𝜑”; ⋄𝜑 is read “it is possible that 𝜑.” Standard (normal) modal logics are interpreted

using a relational (Kripke) model, which is just an ordinary graph equipped with a valuation of

propositions.

Definition 2.1. A relational model isM= //W ,R,V//, where W is a set of nodes (worlds, aka states),

R: W × W an edge relation (the accessibility relation), and V : propositions→P(W) (the valuation

function).

Definition 2.2. Let Rel be the class of all relational models, and let RelS4 be the class of all whose

accessibility relation R is reflexive and transitive.

Unlike conditional logic, in modal logics we evaluate a formula locally. That is, instead of 𝜑

being true or false, we consider the set of worlds where 𝜑 is true. We write M,w⊩𝜑 to indicate

that 𝜑 holds at world w. The semantics of propositions and boolean connectives ¬,∧ are what you

might expect. ⋄𝜑 is defined as ¬□¬𝜑. The key case is for □𝜑:

M,w⊩□𝜑 iff for all u such that wRu, we haveM,u⊩𝜑

That is, □𝜑 holds if 𝜑 holds everywhere accessible from the current state (𝜑 is necessarily true).

The accessibility relation can have many different interpretations depending on what phenom-

enon we are trying to model. For example, if R indicates which states are possibly known (i.e.,

epistemically accessible), then □𝜑 takes on the reading “𝜑 is known (by some agent),” written

box𝜑. Similarly, □ can be cast as belief B, obligation O, provability P, etc. There may be one,

or many, modal operators in a modal logic. We may also index modalities □i, indicating a modal

attitude for each agent i (in a multi-agent setting), or for different relations Ri within the same agent.

2.2 Defeasible Modal Logics

Unfortunately, this usual treatment of modal logics cannot model defeasible reasoning. [cite

Chellas or something] This is because all normal modal logics satisfy the axiom

□(𝜑→𝜓)→□𝜑→□𝜓



For concreteness, let's read □ as belief, and suppose □(bird→flies), i.e., for all things we could

possibly believe we see from the current state, if we see a bird then it flies. Now say we believe we

see a bird (□bird). Then the axiom says we necessarily believe it flies (□flies), leaving no room for

revoking our initial conclusion.

There is a wide variety of different ways to resolve this, to rework the idea of defeasibility

into modal logic. This is not the right time or place for a thorough literature review, but I will

tour a representative sample to give you a sense of what can be done. Certain approaches use the

cumulative-ordered models defined for conditional logic above; others use relational models, but

interpret the relation R to be a plausibility ordering; others still use both. For my purposes, I will

define plausibility models as Krikpe models, but with an irreflexive plausibility relation ≺ (there is

no distinction between epistemic accessibility and plausibility). [cite plausibility models, the word

is used by Baltag & Smets]

Definition 2.3. A plausibility model isM= //W ,≺,V//, where

• W is a set of worlds or states

• R:W ×W (the epistemic accessibility relation)

• ≺:W ×W (the plausibility order)

• V : [todo] (the propositional valuation)

[(Basically a cumulative-ordered model along with an epistemic frame)] I require R to be

reflexive and transitive [Connected? Symmetric?]. As with cumulative-ordered models, I require

≺ to be irreflexive, transitive, antisymmetric. In cases where we want to refer to the reflexive

extension of ≺, I write u ⪯ v to mean u ≺ v or u = v. As before, each plausibility model deter-

mines a best≺ function, whose definition now simplifies to

best≺(S)={w∈S ∣ For all u∈S,¬u≺w}

Similarly, we require the best≺ operator to satisfy a similar Smoothness condition. For any formula

𝜑 (not just propositional formulas), say we have defined some semantics ⊩, and let ⟦𝜑⟧={w∈W ∣

M,w⊩𝜑}. Smoothness says:
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Postulate 2.4. For all plausibility models M, w∈ W , and formulas 𝜑, if w ∈ ⟦𝜑⟧ then either w∈

best≺(⟦𝜑⟧), or there is some v≺w better than w that is the best, i.e. v∈best≺(⟦𝜑⟧).

[Should I move this postulate down past the semantics? It would be nice if I defined the lan-

guage first, so I could say 𝜑∈LC.]

Definition 2.5. Let Plaus be the class of all such plausibility models.

Here are some of the ways we can transfer defeasibility into a modal logic setting:

Boutilier's Modal Treatment.

Baltag & Smets' Safe Belief.

• There are many ways to rework the idea of typicality in modal logic: conditional belief

B𝜑𝜓, regular belief B𝜑, typicality ⋅,T, “defeasible modalities”

3 Dynamic Epistemic Logic and Belief Revision

[This is really one of the best upshots of modeling something using modal logic! If formulas

are nestable, then we can nest things inside and within update operators.] [Introduce Dynamic

Epistemic Logic, and various operators Cond,Lex, Consr for belief revision.]

[Include some parts of this in this section]

Other Dynamic Logics for Learning. My approach to modeling learning in neural networks

takes inspiration from Dynamic Epistemic Logic (DEL) [68; 71]. Perhaps the closest logics to

mine are the logics for plausibility upgrade, in particular conditionalization (Cond), lexicographic

(Lex), and conservative (Consr) upgrade [66; 70]. In the Expressivity portion of my dissertation,

I will explore whether Hebbian update Hebb∗ can be simulated by plausibility upgrade, and vice-

versa whether Cond, Lex, Consr, and vice-versa whether these plausibility upgrades can be simula.

In my thesis, I mainly focus on the effects of single-step updates. But recent literature on

learning in DEL goes beyond this by considering iterated update and convergence to the truth

(“learning in the limit”) [9; 10; 11; 14]. The key questions here are: How can we compare the



learning power of different iterated update policies? How can we axiomatize important proper-

ties of learning? These questions are answered in terms of updates on more classical graphs and

plausibility structures. Although in this thesis I don't consider iterated update, I do lay down the

groundwork to import neural network learning into this setting.

4 Defeasible Reasoning in Neural Networks

Introduce neural networks, for a broad audience (including logicians that know nothing about

them). Explain how inference works in a neural network, and how neural networks can be thought

of as performing defeasible reasoning. (Hannes explains it pretty well, maybe I should borrow his

example.)

Explain learning in a neural network at a high level, both unsupervised (Hebbian learning is

representative of unsupervised learning algorithms, mention the relationship with Principal Com-

ponents Analysis) and supervised (backpropagation is representative here, and the efficient compu-

tation of backpropagation is what has made neural networks so successful).

Inference in a neural network is “like” a conditional inference—but this analogy goes further.

Many authors have already studied a formal correspondence between the input-output behavior of

a neural network and defeasible conditionals. [cite d'Avila Garces, Hannes, Giordano, really all

the people here who have made the observation before me. This is a good time to break down the

history of how it happened.] [Talk about both “soundness” and “completeness” here]

In the rest of this chapter, I will extend this analogy by giving a neural network interpretation

for the more general logic of C. My main point in considering a modal language is the same as

before: It buys us expressive power over conditionals, and in particular sets us up to express neural

network update using Dynamic Epistemic Logic. Towards the end of this work, I will extend these

neural network semantics for C with a dynamic operator for a simple Hebbian update policy over

neural networks.
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Chapter 3

Neural Network Semantics

1 Introduction

[I wrote the following short paragraph for my thesis proposal. But now I have more space to

say more, slowly, about where neural network semantics comes from, what the underlying idea

is. It would be nice to introduce it using an example of a neural network in practice—justify why

binary, interpreted neural networks are the “right” thing to look at!]

I will now give an overview of the particular neural network semantics [rephrase]I've devel-

oped during my PhD. First, I will discuss the simplifying assumptions that make it possible to

use neural networks as models, and introduce the closure (or forward propagation) of a signal in

the net. This closure operator allows us to express the inference, or input-output behavior, of the

net. I will give a modal logic whose key operator is given by this closure operator. I will then

turn to dynamic update in neural networks and introduce iterated Hebbian learning, one of the

simplest learning policies over nets. Finally, I will give a dynamic logic whose formulas express

the behavior of a neural network before and after Hebbian update.

2 Neural Network Models

12



A model of neural network semantics is an artificial neural network (ANN), along with a valu-

ation function which interprets propositions as sets of neurons. I will make a few more simplifying

assumptions soon, but this is the basic idea.

Definition 2.1. A neural network model is N = //N,bias,E,W , A, 𝜂,V//, where

• N is a finite nonempty set (the set of neurons)

• bias∈ N is a fixed node (the bias node)

• Each E⊆ N × N (the edge relation)

• W :E→Q (the edge weights)

• A:Q→Q (the activation function)

• 𝜂∈Q, 𝜂≥0 (the learning rate)

• V :Lprop →P(N) (the valuation function)

In general, a state is just a possible activation pattern or configuration of the net. In practice,

a neural network's nodes take on fuzzy activation values in [0, 1]. But we would like to associate

each state with a binary set of neurons—either a neuron is active (1) or it is not (0). To do this, I

assume that the activation function A is a (nonzero) binary step function (A:Q→{0, 1}). [Defini-

tion:N has a threshold, ∃t∈Q with A(t)=1;N is nondecreasing. These things amount to A being

a binary step function.] It turns out this binary constraint is also a common theoretical assumption

in work that analyzes neural networks as automata [46; 48; 73]. In their terminology, we say our

nets are saturated.

• [Todo, put somewhere in this section, optional property]

• N is Fully connected: ∀m,n∈ N, either (m,n)∈E, (n,m)∈E, or m and n have exactly the

same predecessors and successors.

• In machine learning practice, “fully connected” means that there is an edge from every node

in layer l to every node in the following layer l + 1. But here we mean something much

stronger: the graph is fully connected, including “highway edges” that cut between layers,

as shown in [DIAGRAM]. (This intuition comes from work on highway networks [63].)

13



This assumption is crucial for our results about iterated Hebbian learning, and we expect

that letting it go will not be easy.

Since I'm only considering binary neural networks, either a neuron is active (1) or it is not (0). A

state (activation pattern) of the net is just a set of neurons that happen to be active. Additionally,

I assume there is a special bias node that is active in every state. This bias node provides provides

persistent input to the neural network; its purpose is to avoid the edge case where the input S0 is

empty, and so the net doesn't have any “fuel” to activate any new nodes. (Since bias is always

active, we do not need any edges going into it. So I assume bias has no predecessors.) Putting all

this together, the states of the net are defined as follows.

StateN ={S ∣ S⊆ N and bias∈S}

Usually N is understood from context, and I'll just write State without the subscript.

Example 2.2. [Give an example of a neural network, with weights and bias, and valuation function,

and give examples of states (including the bias node!) Does the valuation function necessarily have

to be a state? i.e. does it necessarily have to include bias when mapping propositions? I believe it

shouldn't, and this example could illustrate that (e.g. we map p to {a,b,c}, but despite the mapping

note that this set is not a state of the net, since bias is not in it. We can extend it to a state by adding

bias.)]

[TODO: Add a note here where I discuss the difference between neural network models and

standard graph models for logic. The key thing here is that neural network models are connectionist

/ represent their inferences in a distributed way. But I have to make that somewhat precise.]

2.1 Clos: The Network Closure Operator

We can describe the input-output behavior of neural networks in terms of their state. Say we

are given an input state A consisting of input-layer nodes, and a possible classification state B

consisting of output-layer nodes. Active neurons in A subsequently activate new neurons, which



activate yet more neurons, until eventually the state of the net stabilizes. If this final state includes

the output B, we say “the net classifies A as B”.

Consider for example the neural network in [EXAMPLE where we classify Tweety as flying.

Make the connection clearer—for binary nets, this is exactly what (binary) classification means!]

The state at the fixed point of this process is called the closure or forward propagation of the

signal A through the net, Clos(A). This closure operator is central to the semantics, since it captures

the underlying dynamics involved in neural network inference. Formally, each choice of E,W , A

specifies a transition function from state S ∈State to the next state. Given an initial state S0, this

transition function FS0:StateN →StateN is given by

FS0(S)=S0 ∪{{{{{{{{{{{{{{{{{{{{{{{{n ∣ A(((((((((((( �
m∈preds(n)

W(m,n) ⋅𝜒S(m)))))))))))))=1}}}}}}}}}}}}}}}}}}}}}}}}
where 𝜒S(m) = 1 iff m ∈ S is the indicator function. In other words, FS0(S) consists of the initial

state S0, along with all those nodes that are activated by their predecessors in S. Notice that FS0(S)

is extensive: all nodes in the initial state will stay activated in successive states.

These neural network models have one final constraint: This transition function FS0 eventually

gives a unique fixed point (or stable state) under the input S0, i.e. a unique state S such that FS0(S)=

S. This guarantees that the closure Clos(S) exists.

Postulate 2.3. I assume that for all states S0, FS0 applied repeatedly to S0, i.e.

S0,FS0(S0),FS0(FS0(S0)), . . . ,FS0
k (S0), . . .

eventually reaches a finite fixed point, and moreover this state is the only fixed point under S0.

Formally, this means that for all S0 ∈StateN there is some k ∈N such that:

1. FS0(FS0
k (S0))=FS0

k (S0). That is, the activation pattern under FS0 will eventually stabilize.

2. FS0
k (S0) is the only state S ∈StateN such that FS0(S) = S. In other words, the final state is

unique for each initial state S0.

Let the closure Clos:StateN →StateN be the function that produces that least fixed point: Clos(S)=

FS0
k (S0) for that k ∈N above. Finally, let Net be the class of all binary neural network models that
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Figure 2.1. [caption!]

satisfy this postulate.

Example 2.4. At this point, let's walk through an example run of the closure of a set Clos(S).

Consider the neural network shown in Figure 2.1, and take the activation function to be A(x) = 1

iff x ⩾ 1. The first cell shows the neural network at initial state S, where only the bias node and



Figure 2.2. [Separate into (a) left, and (b) right. TODO—caption!]

one other node are active. For each neuron n, we activate that neuron if the weighted sum of its

predecessors is ≥1. (Note that currently inactive neurons do not contribute to this sum.)

Now repeat this process for multiple rounds k, until no new neurons activate in the current

round. The first two rows of Figure 2.1 display the k =1 round, and the final row shows an abbre-

viated run of the k = 2 round. The final cell gives exactly those neurons activated in the closure

Clos(S). Take a moment to check that this is in fact a stable state, i.e., the remaining nodes in the

final cell do not subsequently activate. (Hint: You can look at the previous cells for the weights of

those nodes.)

Note. Not every neural network has a unique fixed point Clos(S) for every S∈StateN . Consider the

recurrent neural networkN and the state S shown in Figure 2.2. Take the activation function to be

A(x)=1 iff x⩾0. The active bias neuron in S subsequently activates a, then b, then c. But once c
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is active, a is no longer active (the weighted sum of its predecessors is now −2+1= −1). And so

the net continues to oscillate between these states, never stabilizing.

Characterizing those nets that have a unique fixed point for every state (i.e., characterizing

Net) is a big open problem. Clearly, feed-forward networks do, since without recurrent edges

the subsequent activations will eventually terminate. But the difference between Clos being well-

defined and not is often subtle. In the net N from before, if we change the weight W(bias,a) to 3

instead of 1, the resulting net will no longer oscillate!

Open Question 1. Is there an algebraic or topological characterization of the class of recurrent nets

whose closure Clos(S) reaches a unique fixed point (i.e., does not diverge or oscillate)?

2.2 Reach and Reach↓: The Graph Reachability Operators

[As I mentioned before] [TODO I no longer mention this! I need a different segue], a key

feature of Clos is that it is not monotonic. Let's consider two closure operators over neural networks

that are monotonic—graph reachability Reach, and “reverse” graph reachability Reach↓. Reach(S)

just returns the set of all neurons graph-reachable from S, i.e. Reach:StateN→StateN is given by n∈

Reach(S) iff there exists m∈S with an E-path from m to n. Similarly, Reach↓(S) returns the set of

all neurons that graph-reach some node in S, i.e. Reach↓:StateN →StateN is given by n∈ Reach↓(S)

iff there exists m∈S with an E-path from n to m.

Reach and Reach↓ are not very interesting operators in their own right, but I consider them in

this discussion for two reasons. First, graph reachability is necessary for reasoning about Hebbian

learning (see Chapter ?). Second, in Chapter ? I would like to compare the expressive power of

neural networks against many classes of models, including relational (graph) models.

3 Properties of Clos, Reach, and Reach↓

powerp

The following theorem, due to [38], says that we can neatly characterize the algebraic structure

of Clos a closure operator. Note that Leitgeb proves this for inhibition nets, i.e. weightless neural



networks with both excitatory and inhibitory connections. But inhibition nets and our netsN ∈Net

are equivalent with respect to their propagation structure—I prove this result again for Net as a kind

of “sanity check” that my definitions are correct.

Proposition 3.1. (Leitgeb, [38; 39]) For all S,S1, . . . ,Sk ∈StateN ,

Inclusion. S⊆ Clos(S)

Idempotence. Clos(Clos(S))= Clos(S)

Cumulative. If S1 ⊆S2 ⊆ Clos(S1), then Clos(S1)= Clos(S2)

Proof. I'll prove each in turn:

Inclusion. By definition, Clos(S) = FS
k(S) for some k ∈N, where FS

k is the transition function

from Definition [which?]. By induction on this k (the number of iterations needed to con-

struct the closure):

Base Step. k =0, and so Clos(S)=S. So if n∈S, then n∈ Clos(S).

Inductive Step. Let k ≥0, and suppose n∈S. We have Clos(S)=FS
k(S)=FS(FS

k−1(S)).

Expanding this term out, we have

FS(FS
k−1(S))=S∪{{{{{{{{{{{{{{{{{{{{{{{{n ∣ A(((((((((((( �

m∈preds(n)
W(m,n) ⋅𝜒FS

k−1(S)(m)))))))))))))=1}}}}}}}}}}}}}}}}}}}}}}}}
Since n∈S, n is in the left-hand side of this union. And so n∈ Clos(S).

Idempotence. I will prove a stronger claim: For all k ∈N,

FS
k(Clos(S))= Clos(S)

In other words, applying the transition function FS any number of times to Clos(S) has no

effect. Since Clos(Clos(S))=FS
k(Clos(S)) for some k ∈N, the Idempotence property follows

from this. Let's proceed by induction on k.

Base Step. k =0, and so the goal simplifies to Clos(S)= Clos(S), which is true.

Inductive Step. Let k ≥ 0. We have FS
k(Clos(S)) = FS(FS

k−1(Clos(S))). Our inductive

hypothesis here is that, for k −1, FS
k−1(Clos(S))= Clos(S). So we can subsitute that

to get FS
k(Clos(S))=FS(Clos(S))= Clos(S), which is what we wanted to show.
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Figure 3.1. [Separate into (a) left, and (b) right. TODO—caption!]

Cumulative. Suppose S1⊆S2⊆Clos(S1), as illustrated in Figure 3.1 (a). First, since Clos(S2) is

a fixed point under S2, we have FS2(Clos(S2))=Clos(S2). But I will show that Clos(S1) is also

a fixed point under S2, i.e. FS2(Clos(S1))=Clos(S1) (notice the difference in the subscripts).

Since we assumed that there is a unique fixed point under S2, it will follow that these two

states must be the same. In other words, Clos(S1)= Clos(S2).

Let's expand FS2(Clos(S1)). By definition of F,

FS2(Clos(S1))=S2 ∪{{{{{{{{{{{{{{{{{{{{{{{{n ∣ A(((((((((((( �
m∈preds(n)

W(m,n) ⋅𝜒Clos(S2)(m)))))))))))))=1}}}}}}}}}}}}}}}}}}}}}}}}
Compare this to FS1(Clos(S1)):

FS1(Clos(S1))=S1 ∪{{{{{{{{{{{{{{{{{{{{{{{{n ∣ A(((((((((((( �
m∈preds(n)

W(m,n) ⋅𝜒Clos(S2)(m)))))))))))))=1}}}}}}}}}}}}}}}}}}}}}}}}
Putting the two together, we can see that

FS2(Clos(S1)) = (FS1(Clos(S1))−S1)∪S2

= (Clos(S1)−S1)∪S2 (since Clos(S1) is fixed under S1)
= Clos(S1) (since S1 ⊆S2 ⊆ Clos(S1))

□

In the terminology of [37], Prop is a cumulative closure operator (it satisfies the cumulative

property). An important feature of Clos is that it is nonmonotonic: it is not the case that for all



A, B ∈ State, if A ⊆ B then Clos(A) ⊆ Clos(B). Intuitively, this is because our net's weights can

be negative, and so Clos(B) can inhibit the activation of new neurons that would otherwise be

activated by Clos(A).

[TODO: Add a note here where I talk about this proof strategy used in the proof of the Cumula-

tive property. This proof trick is going to show up everywhere I want to prove something important

about neural network closure patterns. I borrow the trick from Hannes, but my applications of

the trick (from completeness to Hebbian update to first-order properties) is the biggest technical

contribution of this dissertation, and is important for the reader to internalize.]

Proposition 3.2. (Leitgeb, [38; 39]) It is not the case that for all S1, S2 ∈StateN , if S1 ⊆ S2, then

Clos(S1)⊆ Clos(S2).

Proof. Consider the BFNNN in Figure 3.1 (b). Let the activation function A be A(x)=1 iff x>0.

We have S1={a}⊆{a,b}=S2, and so the hypothesis holds. But Clos(S1)={a,c}⊈{a,b}=Clos(S2).

Observe that c does not get activated in Clos(S2) because the weights cancel each other out. □

Next, let's check that Reach is in fact a monotonic closure operator.

Proposition 3.3. For all S, A,B∈StateN ,

Inclusion. S⊆ Reach(S)

Idempotent. Reach(Reach(S))= Reach(S)

Monotonic. If A⊆B then Reach(A)⊆ Reach(B)

Closed under < . Reach(A∪B)= Reach(A)∪ Reach(B)

Proof. I'll prove each in turn:

Inclusion. Suppose n∈S. We have the trivial path from n∈S to itself.

Idempotent. The (←) direction follows from inclusion. As for (→), suppose n ∈

Reach(Reach(S)), i.e. there is a path from some m∈ Reach(S) to n. By definition of Reach

again, there is a path from some x ∈ S to m. But we can put these together to obtain a

path from x∈S to n.
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Monotonic. Suppose A ⊆ B, and let n ∈ Reach(A). By definition of Reach, we have a path

from some m ∈ A to n. But since A ⊆ B, m ∈ B. So we have a path from m ∈ B to n, i.e.

n∈ Reach(B).

Closed under < . For the (→) direction, suppose n ∈ Reach(A ∪ B). So there is a path from

some m∈ A∪B to n. We have two cases: m∈ A, in which case we have a path from m∈ A

to n; or m∈B, in which case we have a path from m∈B to n.

As for the (←) direction, suppose n ∈ Reach(A) ∪ Reach(B). Similarly, we have two

cases, and in either case we have a path from n∈ A∪B. So n∈ Reach(A∪B). □

Reach↓ is as well, and the proof for this is the same, mutatis mutandis the direction of the path.

Proposition 3.4. For all S, A,B∈StateN ,

Inclusion. S⊆ Reach↓(S)

Idempotent. Reach↓(Reach↓(S))= Reach↓(S)

Monotonic. If A⊆B then Reach↓(A)⊆ Reach↓(B)

Closed under < . Reach↓(A∪B)= Reach↓(A)∪ Reach↓(B)

[What interaction property do Clos, Reach and Reach↓ share?]

4 Neural Network Semantics for Conditional Logic

[Rewrite this section so that I'm basically mentioning Hannes' semantics and results, and not

proving anything new myself! Give an illustrative example, which I will be borrowing later for the

logic of C]

[Introduce this all slowly. I will now explain how we can use neural networks as models to

interpret formulas in logic. First, I will give Hannes' semantics for conditional logic. Then I will

introduce my own semantics for modal logic based on his.]

Definition 4.1. Formulas in our conditional language L=› are given by [todo]

Definition 4.2. The semantics for L=› is given as follows. [todo]



Definition 4.3. We write ⊧𝛼⇒𝛽 to mean all netsN ⊧𝛼⇒𝛽, and Γ⊧𝛼⇒𝛽 to mean every model

N of Γ, i.e. N ⊧𝛾⇒𝛿 for all 𝛾⇒𝛿∈Γ also models 𝛼⇒𝛽.

[Prove a few key properties for forward propagation, we can read the axioms directly off of

these, then the proofs for the axioms' soundness follows]

Definition 4.4. The proof system for the conditional logic over L⇒ is given as follows: ⊢𝜑 iff

[todo]

Definition 4.5. [Definition of Γ⊢𝛼⇒𝛽]

Theorem 4.6. (Hannes Leitgeb, [38; 39]) This proof system is sound; for all Γ⊆L⇒ and 𝜑∈L⇒,

if Γ⊢𝜑 then Γ⊧𝜑. [Rephrase for conditionals 𝛼⇒𝛽!]

Proof. [todo] □

Lemma 4.7. Let M= //W , ≺, V//be a plausibility model, and N be given by the NAND con-

struction above. For all conditional terms 𝛼 ∈ [I need a symbol for this . . .], ⟦𝛼⟧N = ⟦𝛼⟧M∁ (the

complement of ⟦𝛼⟧M!)

Proof. We proceed by induction on 𝛼.

[TODO] □

Lemma 4.8. Let M= //W ,≺,V//be a plausibility model, and N be given by the NAND construc-

tion above. For all conditional formulas 𝛼⇒𝛽∈L⇒, where 𝛼,𝛽∈[todo],

N ⊧𝛼⇒𝛽 iff M⊧𝛼⇒𝛽

Proof. Combining the previous two lemmas, we have

N ⊧𝛼⇒𝛽 iff ⟦𝛽⟧N ⊆ Clos(⟦𝛼⟧N) (by definition)
iff ⟦𝛽⟧M∁ ⊆ Clos(⟦𝛼⟧M∁ ) (by Lemma 5.17)
iff ⟦𝛽⟧M∁ ⊆best≺(⟦𝛼⟧M)∁ (by Lemma 5.17)
iff best≺(⟦𝛼⟧M)⊆⟦𝛽⟧M (flipping ⊆ and complementing both sides)
iff M⊧𝛼⇒𝛽 (by definition)

□

Theorem 4.9. (Model Building for L⇒) For all consistent Γ⊆L⇒, there is finiteN such thatN ⊧Γ.
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Proof. [] □

Corollary 4.10. (Completeness for L⇒) For all consistent Γ⊆L⇒ and all conditionals 𝛼⇒𝛽∈L⇒,

if Γ⊧𝛼⇒𝛽 then Γ⊢𝛼⇒𝛽

Proof. [] □

• Need to also have modal logic semantics for plausibility models. The big thing here is that

I have to prove we can still build a finite plausibility model in this setting!!!—completeness

on the plausibility model end is going to be the hard part, and will involve temporal logic

tricks.

• We will get a lot more mileage out of Lemma [todo]!

5 Neural Network Semantics for the Modal Logic of C

I can now state the specific logic and neural network semantics that I will consider. Let p,q,...

be finitely many atomic propositions. These represent fixed states, corresponding to features in

the external world that we know ahead of time. Usually these are input and output states, although

they could be intermediate “hidden” states if we know these features ahead of time. For example,

p might be the set of neurons that represent the color pink. For more complex formulas,

Definition 5.1. Formulas in the base modal language LC are given by

𝜑,𝜓≔ p ∣ ¬𝜑 ∣ 𝜑∧𝜓 ∣ A𝜑 ∣ □𝜑 ∣ C𝜑

⊤,⊥,∨,→,↔ and the dual modal operators E, □, //C//are defined in the usual way.

The operator A is just the modal universal quantifier; A𝜑 reads “𝜑 holds everywhere.” The □

operator is the standard relational modal one, with intended reading [todo]. Recall that we read

conditionals 𝜑 ⇒ 𝜓 classically as “the best 𝜑-states are 𝜓-states.” [UPDATE READING The

modal operator C is intended to be the “best” modality that occurs in this reading. In other words,

C𝜑 is meant to read “the current state (neuron) n is a best (most normal, plausible, typical) one.”]



[Move to plausibility model discussion: Note that the semantics for C𝜑 here are not the most

general possible; [cite Johan, Sonja + Alexandru] consider best≺,i,w relations that depend on the

agent i, as well as the current state w where C𝜑 is being evaluated. [Define ⊧Plaus!!!]]

It is not immediately clear how these readings are justified; in my dissertation, I will justify

these readings by connecting the neural network semantics I give here to more traditional semantics

for A,□,□↓, and C.

At last, here are the neural network semantics for LC. I will define the semantics for the dual

operators E, □, //C//instead of A,□,C; either choice is equivalent, but this choice is somewhat more

intuitive, since □ and //C//directly map to the neural network operators Reach and Clos.

Definition 5.2. For all N ∈Net, n∈ N:

N ,n⊩ p iff n∈V(p)
N ,n⊩¬𝜑 iff N ,n⊩𝜑
N ,n⊩𝜑∧𝜓 iff N ,n⊩𝜑 and N ,n⊩𝜓
N ,n⊩E𝜑 iff ⟦𝜑⟧≠∅
N ,n⊩ □𝜑 iff n∈ Reach(⟦𝜑⟧∪{bias})
N ,n⊩ //C//𝜑 iff n∈ Clos(⟦𝜑⟧∪{bias})

where ⟦𝜑⟧={n∈ N ∣N ,n⊩𝜑}.

Proposition 5.3. By the definition of the duals E, □, //C//, we can instead define the semantics for

A,□,C as follows. For all N ∈Net, n∈ N:

N ,n⊩A𝜑 iff ⟦𝜑⟧= N
N ,n⊩□𝜑 iff n∈(Reach(⟦𝜑⟧∁ ∪{bias}))∁

N ,n⊩C𝜑 iff n∈(Clos(⟦𝜑⟧∁ ∪{bias}))∁

Definition 5.4. We write N ⊧Net 𝜑 (“the net models 𝜑”) to mean N ,n⊩ 𝜑 for all n∈ N; ⊧Net𝜑 to

mean all netsN ⊧𝜑; and finally, Γ⊧Net 𝜑 to mean every modelN of Γ, i.e. N ⊧Net 𝜓 for all 𝜓∈Γ

also models 𝜑.

The following fact says that these neural semantics for C match up with Leitgeb's neural seman-

tics for conditionals 𝜑 ⇒ 𝜓. Formally, conditionals 𝜑 ⇒ 𝜓 are expressible in LC by A(C𝜑 →𝜓).

This justifies our reading of C𝜑 as “the current state (neuron) n is a best (most normal, plau-

25



sible, typical) one.”

Proposition 5.5. Let 𝜑⇒𝜓∈L⇒ (that is, 𝜑,𝜓∈Lprop). Then for all N ∈Net,

N ⊧Net 𝜑⇒𝜓 iff N ⊧Net A(C𝜑→𝜓)

Proof. [Todo] □

Example 5.6. [Give an example of a neural network model from before, but this time with our

semantics in action. Give a number of constraints involving bird, penguin, and fly, and evaluate

the truth of these at particular states]

[Discussion of semantics]

[Note that the syntax is backwards/dualed from the syntax for neural network semantics. But

because they're duals of each other, it doesn't matter. (It's a known modal logic trick that you can

do induction on either version/form.)]

[Talk about the possible worlds interpretation of these, & the local evaluation at particular

neurons!]

[talk about N ⊧ 𝜑, which in this context means “𝜑 activates all of the neurons in N ”, or “𝜑

holds across the entire net.” Also define Γ⊧𝜑.]

[A reader might be confused about the “swaps” from Reach↓ to □, as well as the choice to

use diamond operators instead of the normal box ones.] [How can we justify the readings we had

above? (at least intuitively)]

[I now have space to say these points in more detail (there's lots to say!)] Although these seman-

tics are based on Leitgeb's [40], they differ in a few key ways. First, his semantics uses conditionals

𝜑 ⇒ 𝜓 to capture neural network inference, whereas mine instead centers on the modal operator

//C//. Second, I include these additional operators □ and □↓ that are not mentioned in his work.

Finally, Leitgeb battles with the issue of how to correctly interpret negation; I sidestep this issue by

using neural networks for interpreting //C//𝜑 (where the “action” happens), but not for ¬ and ∧. The

bottom line is this: proving completeness for this logic is not necessarily just a matter of importing

the proof from [40].



As with possible-worlds semantics for modal logic, we evaluate the truth of formulas locally at

particular neurons.

I have tried to keep these semantics as close as possible to the ordinary presentation of seman-

tics for modal logic. Basically, ¬,∧,∨,→,A,E are all treated classically. But we defer to the neural

network when faced with evaluating //C//, □, and □↓. Since ⟦𝜑⟧ can be any arbitrary set of neurons,

it may not include the bias node. This means ⟦𝜑⟧ is not necessarily be a valid state of the neural

network, since the bias might not be in it. So in order to apply the neural network functions Reach↓,

Reach, and Clos, we provide the bias on input by giving ⟦𝜑⟧∪{bias}∈StateN . [TODO: I will have

to do this for the conditional logic semantics too!]

5.1 Why Consider this Modal Logic?

[The conditional logic came first, and I could have just re-used it in order to save myself a lot

of work. But I think it's important to explain my aesthetic choices in moving to the modal logic,

rather than just using Hannes' conditional logic. But this is such a technical detail that I should at

least advise the reader to skip this section if they're not interested.]

5.2 What Makes these Semantics “Neural”

What makes these semantics “neural” or “connectionistic”? Easy answer: the key operators

for inference are implemented in a neural network. Better answer: no single neuron/node holds the

information for //C//𝜑 How is this different from relational or neighborhood semantics? Is this a

meaningful difference? What does Hannes have to say about it in his dissertation?

Tbh maybe it just means “loosely inspired by real neuron and synapse behavior”, but even then

there are probably properties we can write down and check.

6 Proof System and Soundness

For C alone, [38] proves that the properties in Proposition [which?] are complete for Clos over

27



Axioms for −−

− − : Axioms for A:
(Dual) □𝜑↔¬□¬𝜑
(Distr) □(𝜑∧𝜓)↔(□𝜑∧□𝜓)
(Refl) □𝜑→𝜑
(Trans) □𝜑→□□𝜑

(Dual) E𝜑↔¬A¬𝜑
(Distr) A(𝜑→𝜓)→(A𝜑→A𝜓)
(Refl) A𝜑→𝜑
(5) E𝜑→A(E𝜑)
(Interact) A𝜑→□𝜑

Axioms for C: Rules of Inference:
(Dual) //C//𝜑↔¬C¬𝜑
(Refl) C𝜑→𝜑
(Trans) C𝜑→CC𝜑
(CM) A(C𝜑→𝜓)→

(C(𝜑∧𝜓)→C𝜑)
(Interact) □𝜑→C𝜑

(MP) From ⊢𝜑→𝜓 and ⊢𝜑
we can infer ⊢𝜓

(A-Nec) From ⊢𝜑, we can infer ⊢A𝜑
(−−

− − -Rep) From ⊢𝜑↔𝜓, infer
⊢□𝜑↔□𝜓

(C-Rep) From ⊢𝜑↔𝜓, infer
⊢C𝜑↔C𝜓

Figure 6.1. Axioms and rules of inference for [todo]

binary, feed-forward nets. We transcribe these into our modal language.

Definition 6.1. The proof system ⊢ for neural network semantics ⊧Net over LC is given as follows:

⊢𝜑 iff either 𝜑 is valid in propositional logic, or 𝜑 is one of the axioms listed in Figure 6.1, or 𝜑

follows from some previously obtained formulas by one of the inference rules.

The axioms for □ and A form “MLU” (modal logic with the universal quantifier), and this is

almost the standard complete axiomatization of this logic [Cite! Johan van Benthem mentions it

in Modal Logic for Open Minds]; □ does not satisfy a (Nec) rule, so instead we have the rule of

replacement (Rep) from classical modal logic. Aside from this difference, you can think of □ as the

modal logic S4. A is just the modal logic S5 with an additional interaction axiom A𝜑→□𝜑 stating

that if 𝜑 holds everywhere, then it holds everywhere above the current world.

The axioms and rules for C come from the rules for cumulative conditionals 𝜑 ⇒ 𝜓. Let me

explain how I derived them. First, from [cite Giordano's paper], if in conditional logic we allow

for propositional nesting of formulas (we still cannot nest 𝜑⇒𝜓), we can express the axioms for

cumulative logic as follows. Let ⊢Prop𝜑 mean that 𝜑 is provable in the underlying propositional



system.

(Reflexivity). 𝜑⇒𝜑

(Left Equivalence). If ⊢Prop𝜑↔𝜓 then (𝜑⇒𝜌)→(𝜓→𝜌)

(Right Weakening). If ⊢Prop𝜑→𝜓 then (𝜌⇒𝜑)→(𝜌→𝜓)

(Cautious Monotonicity). (𝜑⇒𝜓)∧(𝜑⇒𝜌)→(𝜑∧𝜓→𝜌)

(Cautious Cut). (𝜑∧𝜓⇒𝜌)∧(𝜑⇒𝜓)→(𝜑⇒𝜌)

We can straightforwardly translate these into the language of LC by replacing each 𝜑 ⇒ 𝜓 with

A(C𝜑 → 𝜓). From here, each of the above cumulative logic axioms follows from modal ones:

(Reflexivity) follows from (Refl); (Left Equivalence) follows from propositional axioms plus

(Rep); (Right Weakening) follows from propositional axioms plus modus ponens (MP); (Cau-

tious Monotonicity) follows from the modal axiom (CM). [TODO: What about (Cautious Cut)

now? Is it sound for Net? Does it need to be replaced by something else?]

Additionally, I have added the axioms (Trans) and (Interact) to reflect the fact that Clos is

idempotent, and for all S∈StateN , Clos(S)⊆ Reach(S).

As a modal operator, C is non-normal and classical. Instead of a (Distr) axiom, C satisfies the

weaker (CM). The C operator also satisfies the replacement rule (Rep) from classical modal logic

in lieu of (Nec) [cite (Rep) rule].

Definition 6.2. If Γ⊆LC is a set of formulas and 𝜑∈LC a formula, then Γ⊢𝜑 whenever there are

finitely many 𝜓1, . . . ,𝜓k ∈Γ such that ⊢𝜓1 ∧ . . . ∧𝜓k →𝜑.

Theorem 6.3. ( Soundness for LC over ⊧Net) These rules and axioms are sound for neural net-

work models; for all consistent Γ⊆LC and 𝜑∈LC, if Γ⊢𝜑 then Γ⊧Net 𝜑.

Proof. Suppose Γ⊢𝜑. That is, there are finitely many 𝜓1, . . . ,𝜓k ∈Γ such that ⊢𝜓1 ∧ . . . ∧𝜓k →𝜑,

which in turn means (by (MP)) that if ⊢𝜓1, . . . , ⊢𝜓k, then ⊢𝜑. Now let N ⊧ Γ. In particular, this

means N ⊧ 𝜓1, . . . , 𝜓k. I now need to show that N ⊧ 𝜑. Since ⊢𝜑, 𝜑 is itself an axiom or follows

from previously obtained formulas by the inference rules. In order to prove N ⊧𝜑, it's enough to

show that the axioms and rules of inference are valid (hold for all N ∈ Net at all neurons n ∈ N

whatsoever).
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To check: Use: To check: Use:
(Distr) for □ Monotonicity of Reach (Refl) for C Inclusion of Clos
(Refl) for □ Inclusion of Reach (Trans) for C Idempotence of Clos
(Trans) for □ Idempotence of Reach (CM) for C Cumulativity of Clos
(Interact), A+□ Reach(S)⊆W (Interact), □+C Reach contains Clos
(Rep) for □ Reach is a function (Rep) for C Clos is a function

Figure 6.2. [caption!]

The propositional axioms and (MP) are totally classical, and are known to be sound. The

(Dual) axioms for A, □, and C are also sound (by definition of their duals). The semantics for

A do not make use of the neural network at all, so the axioms (Distr), (Refl), (5) and the (Nec)

rule for A are classically sound as well. Let N ∈ Net, n ∈ N. I will now check the remaining

rules and axioms in detail. This is a bit tedious, so see Figure 6.2 for a summary.

(Distr) for −−

− − .

(Refl) for −−

− − . Suppose contrapositively N , n ⊩ 𝜑. So n ∈ ⟦𝜑⟧N∁ . Note that in particular n ∈

⟦𝜑⟧N∁ ∪{bias} (we can simply add the bias node). By Inclusion of Reach, n∈Reach(⟦𝜑⟧N∁ ∪

{bias}). By the semantics, N , n ⊩ □¬𝜑. By (Dual) for □, N , n ⊩ ¬□𝜑, i.e., N , n ⊩ □𝜑,

and we are done.

(Trans for −−
− − ). Suppose contrapositively N ,n⊩□□𝜑. This gives us N ,n⊩¬□□𝜑. Applying

(Dual) twice, we haveN ,n⊩ □ □¬𝜑. By the semantics, n∈ Reach(Reach(⟦𝜑⟧N∁ ∪{bias})∪

{bias}). Note that bias is always in the Reach of a set already containing bias, so we can sim-

plify this to n∈Reach(Reach(⟦𝜑⟧N∁ ∪{bias})). By Idempotence of Reach, n∈Reach(⟦𝜑⟧N∁ ∪

{bias}). But this means N ,n⊩ □¬𝜑, and by (Dual) we conclude that N ,n⊩□𝜑.

(Interact) for A and −−

− − . Suppose contrapositively N , n ⊩ □𝜑. By (Dual) for □, N ,n ⊩ □¬𝜑.

By the semantics, n∈ Reach(⟦𝜑⟧N∁ ∪{bias})⊆ N. [Todo]

(Rep) for −−

− − . Suppose ⊧Net𝜑 ↔ 𝜓, i.e., 𝜑 ↔ 𝜓 holds for all nets, for all neurons. So for all

N ∈ Net, ⟦𝜑⟧N = ⟦𝜓⟧N . Since Reach is a function, Reach(⟦𝜑⟧N ∪ {bias}) = Reach(⟦𝜓⟧N ∪

{bias}) for all N . So in particular, Reach(⟦𝜑⟧N∁ ∪{bias})= (Reach(⟦𝜓⟧N∁ ) ∪ {bias})∁ for all

N , which means ⊧Net□𝜑↔□𝜓.



(Refl) for C. Suppose contrapositively N , n ⊩ 𝜑. So n ∈ ⟦𝜑⟧N∁ . Note that in particular n ∈

⟦𝜑⟧N∁ ∪ {bias} (we can simply add the bias node). By Inclusion of Clos, n ∈ Clos(⟦𝜑⟧N∁ ∪

{bias}). By the semantics, N ,n⊩ //C//¬𝜑. By (Dual) for C, N ,n ⊩¬C𝜑, i.e., N ,n⊩C𝜑,

and we are done.

(Trans) for C. Suppose contrapositivelyN ,n⊩CC𝜑. This gives usN ,n⊩¬CC𝜑. Applying

(Dual) twice, we haveN ,n⊩ //C////C//¬𝜑. By the semantics, n∈Clos(Clos(⟦𝜑⟧N∁ ∪{bias})∪

{bias}). Note that bias is always in the closure of a set, so we can simplify this to n ∈

Clos(Clos(⟦𝜑⟧N∁ ∪{bias})). By Idempotence of Clos, n∈Clos(⟦𝜑⟧N∁ ∪{bias}). But this means

N ,n⊩ //C//¬𝜑, and by (Dual) we conclude that N ,n⊩C𝜑.

(CM) for C. [Todo]

(Interact) for −−

− − and C.

(Rep) for C. Suppose ⊧Net𝜑 ↔ 𝜓, i.e., 𝜑 ↔ 𝜓 holds for all nets, for all neurons. So for all

N ∈Net, ⟦𝜑⟧N =⟦𝜓⟧N . Since Clos is a function, Clos(⟦𝜑⟧N ∪{bias})=Clos(⟦𝜓⟧N ∪{bias})

for all N . So in particular, Clos(⟦𝜑⟧N∁ ∪ {bias}) = (Clos(⟦𝜓⟧N∁ ) ∪ {bias})∁ for all N , which

means ⊧NetC𝜑↔C𝜓. □

7 Reflections on Neural Network Verification

[Here's where I can discuss things like property verification vs verifying a particular neural

network vs constraints + model building (alignment), extraction, “valuation search”, and Thomas

Icards' method]

[say something about neuro-symbolic systems more generally in this framework] The basis

for many neuro-symbolic systems is that they encode logical information into neural networks, or

conversely, encode neural networks as models in logic (see [53]). Given these translations, certain

neural networks and logic models are able to represent the same information.
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Interlude: A History and Survey of Neural Network Semantics

[Rewrite this to flow better, and to relate neuro-symbolic systems to the work in this section.

I'm trying to get across a broader perspective, not simply a single new system!] My thesis work

builds on existing logics that use neural network semantics, and shares similarities with logics for

modeling social networks. Additionally, my approach to modeling learning takes inspiration from

work on learning in Dynamic Epistemic Logic (DEL). Here I'll take a moment to situate my thesis

in this broader context and clarify what my contribution is in each case.

[Make it clear that this point of view is not my own original idea; but applying it broadly and

developing it as far as I do is novel. Give a history of this perspective, and also make an effort to

cast other neuro-symbolic systems within this framework (including the FLaNN work, etc.) This

is the place for a proper literature review.]

The core idea behind neural network semantics—that neural networks can be treated as models

for logic—actually dates back to the very first paper on neural networks. In McCulloch and Pitts

[44], logical formulas are mapped directly to individual neurons in the net. This approach suffers

from the well-known “grandmother cell” problem [30]: it is cognitively implausible that an indi-

vidual neuron could represent a complex concept such as “grandmother”. Instead, concepts in brain

networks are distributed across multiple neurons at once.

Neural network semantics is based on a recent reimagining of this approach [7; 40], where

logical formulas are mapped to sets of neurons rather than to individual neurons. Early work estab-

lished the correspondence between inference in a neural network and nonmonotonic conditionals

[7; 17; 38; 39]. More recently, [28; 29] proved soundness for inference over fuzzy neural networks.

In my thesis work so far [34; 35], I applied ideas from Dynamic Epistemic Logic to model a simple

update policy, Hebbian learning, in neural network semantics. The key results of this work are the

first ever soundness and completeness theorems for any learning policy on neural networks.

[Go through popular neuro-symbolic proposals, and explain their relationship with neural net-

work semantics. What order???]
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Semantic Encodings.

Logics with Social Network Semantics.

Logic Tensor Networks.

Distributed Alignment Search.

DeepProbLog.

Logic Explained Networks.

Neural Networks as Automata.

Neural Network Fibring.

Logics with Social Network Semantics. [Make this a single point]It has recently come to my

attention that a similar approach is being used to model group behavior in social networks. In these

social network logics [4; 8; 18], nodes in the graph represent individual agents, and each formula

is mapped to the set of agents that adopt a certain social attitude. Agents influence each other, and

the spread of their attitudes is modeled much in the same way as forward propagation of a signal

in a neural network.

This work shares essentially the same premise and techniques as neural network semantics; I

personally view this as a case of parallel discovery. But the two approaches still differ in interesting

ways. First, in some sense the two semantics are operating on different “levels”: social networks

model interactions between multiple agents, whereas neural networks model interactions between

components of the same (single) agent. Second, the two differ in subject matter. Social network

semantics focuses on different social links between agents, and how these links change [4]. Neural

network semantics, my own work included, instead focuses on inferences and updates inspired by

artificial and natural neural networks.
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Chapter 4

Neural Network Model Constructions

1 Introduction

• model-building techniques

• applications: completeness + expressivity for neural networks viewed as logic models

• expressivity, including how to build neural network models from other types of models,

and vice-versa

I will now show that these are all the axioms for neural network semantics, i.e., these axioms are

complete. This is philosophically significant for the theory of neuro-symbolic AI—at a high level,

completeness says that this logic exactly matches the closure behavior of binary neural networks.

At the crux of this proof is the task of neural network model building: Given any set of constraints

Γ consistent in this logic, I will need to construct a neural network model N ∈ Net satisfying Γ.

This is just as interesting, but is more practical: it means we can custom-design neural networks

that model exactly the constraints over LC we would like them to have.

In previous work by Leitgeb [38; 39], completeness for the cumulative conditional logic over

L⇒ was shown by way of plausibility models Plaus. Leitgeb showed that any plausibility model

M∈Plaus can be transformed into an equivalent neural network N ′∈Net: For all 𝜑⇒𝜓∈L⇒,

N ′⊧𝜑 iff M⊧𝜑

It would be nice if this technique lifted to the more expressive language LC. But we have no such

luck. In Section [todo], I will show that the language LC can express formulas that hold for all

M∈ Plaus, yet do not hold in every N ∈ Net. In a precise sense, plausibility models are not the

correct analogy for explaining the closure behavior of neural networks.

Instead, I will directly build a neural network model using a modified version of the standard

canonical model construction in modal logic. At first, I will build a net with infinitely many neu-
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rons. Then, in section [todo] I will use the standard modal logic technique of filtration to transform

this network into a finite one.

The proof I give here is non-constructive, since it first requires building an infinite neural net-

work. Unfortunately, I do not know of a constructive algorithm for building a neural network

model from Γ. For now, I will leave it as an open question.

Open Question 2. For a given finite set of constraints Γ⊆LC, is there a constructive algorithm that

produces a modelM∈Plaus and state w∈W such that M,w⊧Γ?

2 The Canonical Neural Network Construction

Lemma 2.1. (Lindenbaum's Lemma [cite!]) We can extend any consistent set Γ to a maximally

consistent set Δ⊇Γ.

First, lets start by constructing a relational model inspired by the standard Kripke-style canon-

ical model. I will use this model as a base for the canonical neural network model.

Definition 2.2. Let the canonical neural network model beN c= //N c,biasc,Ec,W c, Ac,𝜂c,V c//, where

• N c ={Δ ∣ Δ is maximally consistent over LC}. There are countably many; let's fix an order

on these nodes Δ0,Δ1, . . .

• Δ′EcΔ iff for all 𝜑∈LC, if □𝜑∈Δ then 𝜑∈Δ′.

• biasc is [todo]

• Suppose Δi ∈ N has predecessors Δi1′ ,Δi2′ , . . . ,Δik′ . For each Δi j′ EcΔi, let

W c(Δi j′ ,Δi)=(pi) j

where pi is the i th prime number. The idea is that each prime pi uniquely codes for the node

Δi, and the weight between Δi and its predecessor Δi j′ is a power of pi that uniquely codes

for Δi j′ . Consequently, any activation value x we care about is going to be a sum of powers

of pi, from which we can reconstruct precisely the Δi being activated and the predecessors

Δi j′ that were involved in activating it.
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• Let x∈Q, and suppose that x=∑j∈X (pi) j for some i∈{1,..., |N c|} and some subset X ⊆{1,...,

k}, where k is the number of predecessors of node Δi. In other words, x uniquely codes for

a subset {Δi j′ ∣ Δi j′ EcΔi and j ∈ X} of predecessors of Δi, as explained just above. Let the

activation function Ac(x) be defined as follows:

Ac(x)=1 iff for all 𝜓, //C//𝜓∈ �
Δi j′ EcΔi and j∈X

Δi j′ implies //C//𝜓∈Δi

(If x does not code for any valid subset X, then simply set Ac(x)=0.)

[This is my current best guess for how to define Ac! It's tricky!]

• Δ∈V c(p) iff p∈Δ

This construction is still a bit opaque. First, the choices for N c and V c are totally standard fare

when building a canonical model. The basic idea is that the nodes are maximally consistent sets

Δ, and we can control what must be true at the current world by moving to the right Δ. The choice

for Ec is the reverse of the canonical Kripke relation Rc, since neural networks look “downwards”

rather than “upwards” for a set that caused the activation of n.

All of the action is in the choice for the activation function Ac. Let Δi have predecessors Δi1′ ,

Δi2′ , . . . ,Δik′ as before, and let X denote the subset of them that are currently active. Intuitively, we

want Ac(x)=1 precisely whenever Δi “says” that the subset X “should” activate Δi. But since we

don't yet have access to the semantics—we are currently defining the semantics!—we have to say

this syntactically. [This is difficult to say syntactically, but what's written here is my current best

guess!]

Proposition 2.3. () The canonical neural network model N c is a well-defined (infinite) neural

network model.

Proof. [TODO] I need to show is that, for all S∈StateN c, ClosN c(S) is in fact the unique fixed point

under S. [how the hell do I prove that. . .?] [What constraints to I need on Ec??] □

Lemma 2.4. ( Truth Lemma for LC) We have, for all Δ∈ N c, 𝜑∈LC,

N c,Δ⊩𝜑 iff 𝜑∈Δ



Proof. [WARNING: I do not have this result yet! It's a pain in the ass to get right.]

By induction on 𝜑. The propositional and boolean cases are straightforward. The A𝜑 case is

totally standard, and follows from the usual lemmas about maximally consistent sets [cite]. I'll skip

to the most relevant cases. It's enough to consider the □ and //C//cases:

−−−
− Case.

//C //Case. Observe that the Truth Lemma in this case, N c,Δ⊩ //C//𝜑 iff //C//𝜑∈Δ, is equiva-

lent to the claim:

ClosN c(⟦𝜑⟧)={Δ ∣ //C//𝜑∈Δ}

First, by construction ClosN c(⟦𝜑⟧) is the unique fixed point of the transition function F⟦𝜑⟧

under ⟦𝜑⟧. I will show here that the set {Δ ∣ //C//𝜑 ∈ Δ} is also such a fixed point, i.e.,

F⟦𝜑⟧({Δ ∣ //C//𝜑∈Δ})={Δ ∣ //C//𝜑∈Δ}. Since ClosN c(⟦𝜑⟧) is the unique fixed point under

⟦𝜑⟧, it will follow that these two states are the same. In other words, ClosN c(⟦𝜑⟧) = {Δ ∣

//C//𝜑∈Δ}.

For the (→) direction, suppose Δ∈F⟦𝜑⟧({Δ ∣ //C//𝜑∈Δ}). By definition of F⟦𝜑⟧, we have

two cases:

Case 1. Δ∈ ⟦𝜑⟧. So N c, Δ⊩ 𝜑, and so by the inductive hypothesis 𝜑 ∈ Δ. By (Refl)

and (Dual), //C//𝜑∈Δ.

Case 2. Δ is activated by its predecessors. For concreteness, let's say Δ=Δi for some

i∈N, and let Δi1′ ,Δi2′ , . . . ,Δik′ be its Ec-predecessors. Formally, we have

Ac((((((((((((((( �
Δij′ EcΔi

W c(Δij′ ,Δi) ⋅𝜒{Δ ∣ //C//𝜑∈Δ}(Δij′ ))))))))))))))))=1

Let this inner sum be denoted by x (that is, Ac(x) = 1). Since Ac(x) = 1, we must

have x = ∑j∈X (pi) j for some subset X ⊆ {1, . . . , k}. As explained above, from this

sum of prime powers we can reconstruct the subset of predecessors that are active:

{Δi j′ ∣ Δi j′ EcΔi and j ∈ X}. By construction of Ac, we have:

For all 𝜓, //C//𝜓∈ �
Δi j′ EcΔi and j∈X

Δi j′ implies //C//𝜓∈Δi
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Notice that in the sum above, Δij′ is active ( j ∈ X) exactly when //C//𝜑 ∈Δij′ . It fol-

lows that //C//𝜑∈⋂Δi j′ EcΔi and j∈X Δi j′ holds. And so we conclude that //C//𝜑∈Δi =Δ,

which is what I wanted to show.

As for the (←) direction, suppose //C//𝜑∈Δ. Let's say Δ=Δi for some i∈N, and let X ={ j ∣

Δi j′ EcΔi and //C//𝜑∈Δi j′ } be a set that selects active predecessors of Δ. I want to show that

Δ∈F⟦𝜑⟧({Δ ∣ //C//𝜑∈Δ}), i.e., these predecessors activate Δ:

Ac((((((((((((((( �
Δij′ EcΔi

W c(Δij′ ,Δi) ⋅𝜒{Δ ∣ //C//𝜑∈Δ}(Δij′ ))))))))))))))))=1

By construction of Ac it's enough to show:

For all 𝜓, //C//𝜓∈ �
Δi j′ EcΔi and //C//𝜑∈X

Δi j′ implies //C//𝜓∈Δi

Let 𝜓∈LC be a formula, and suppose //C//𝜓∈⋂Δi j′ EcΔi and j∈X Δi j′ . I will now drop the sub-

scripts and re-phrase this to be as general as possible: For all maximally consistent sets Δ′,

if Δ′EcΔ and //C//𝜑∈Δ′, then //C//𝜓∈Δ′.

[todo, stuck!] □

3 Filtration: Building a Finite Neural Network

The fact that we can build this canonical neural network is not enough. The canonical net N c

is huge—it has infinitely many nodes, each of which are infinite sets of formulas! In this section, I

will transformN c into an equivalent finite neural network modelN ∈Net. [Relate this to the finite

model property: every formula 𝜑 that has a model has a finite countermodel.] (Polynomial size

would be nice, but I will leave this to future work. We probably won't be so lucky.)

The canonical neural network construction is not totally bizarre from a modal logic standpoint,

so we can apply the standard technique of filtration to construct the finite model.

Definition 3.1. [Define filtration!]

[For computer science reader: this is similar to the Myhill-Nerode theorem about finding a



minimal DFA equivalent to a given DFA,]

Theorem 3.2. [A filtration of M preserves the formulas true inM, at every world.]

Proposition 3.3. [A filtration of a (possibly infinite) N is still a well-defined neural network

model.]

Theorem 3.4. [If Γ is finite, then any filtration of a (possibly infinite) neural network model N

through Γ is also finite.]

Definition 3.5. [Define the fine filtration (I need to pick a specific filtration to see that one exists. In

order to pick one that may prove to be more useful as a neural network, I pick the fine filtration (the

most densely connected filtration) over the coarse filtration (the least densely connected filtration))]

Proposition 3.6. [The fine filtration is in fact a filtration]

Corollary 3.7. (Finite Model Property) [State the finite model property, putting it all together. We

can build a finite ]

Corollary 3.8. (Finite Model Building) [For any finite set of constraints Γ, we can construct a

finiteN ∈Net satisfying Γ]

[Note that this doesn't actually give us a constructive algorithm for building the finite model,

since we have to build the infinite canonical model first.] [After talking to Saul and Larry about

this, I should just leave it as an open question and point to Larry's work on constructively building

finite models from formulas. It is likely this trick will work here too.]

Open Question 3. For a given finite set of constraints Γ⊆LC, is there a constructive algorithm that

produces a modelM∈Plaus and state w∈W such that M,w⊧Γ?

4 Model Building and Completeness Theorems

[I can only state + prove these after doing filtration!!]
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Theorem 4.1. ( Model Building for ⊧Net) For all consistent Γ⊆LC, there is some finiteN ∈Net

and neuron n∈ N such that N ,n⊩Net Γ.

Proof. Let Γ be consistent, and letM∈Plaus, w∈W be some finite plausibility model and world

such that M,w⊩Plaus 𝜑 (which we know exists by Theorems [model building] and [filtration], see

Appendix [] for details). Now let N ∈ Net be given by the NAND construction above. We have

w∈W ⊂N, and so we can evaluate ⊩Net at w∈N. By Lemma 5.19,N ,w⊩Net𝜑, and we are done. □

Corollary 4.2. ( Completeness for ⊧Net) For all consistent Γ⊆L and all formulas 𝜑∈L,

if Γ⊧Net 𝜑 then Γ⊢𝜑

Proof. Since the languageLC has negation, completeness follows from model building in the usual

way; this proof is entirely standard. Suppose contrapositively that Γ⊢𝜑. It follows that Γ⊢¬𝜑. So

Γ∪{¬𝜑} is consistent, and by Theorem 4.1 we haveN ∈Net and n∈ N such that N ,n⊧Net Γ∪{¬

𝜑}. But then N ,n⊧Net Γ yet N ,n⊧𝜑 [fix notation here], which is what we wanted to show. □

Example 4.3. (Building a Neural Network Model I) The discussion above is all very abstract.

Let's see how the neural network model building is done by example. Consider our birds example

from before, where Lprop = {bird, penguin, fly}. Say we want to build a model satisfying the non-

monotonic constraints from before, i.e.,

Γ={bird⇒fly,penguin→bird,penguin→¬fly}

That is, birds typically fly, penguins are birds, but penguins do not fly.

First, Theorem 4.1 says that we can construct a neural network and a neuron at which these con-

straints are true. But say we want these constraints to be true everywhere. This is simple enough:

just add the universal quantifier A in front of each constraint. Additionally, bird⇒fly is not in

the language of LC, so we need to translate it. Recall that the conditional bird⇒fly is equiva-

lent to A(Cbird→fly). Our set of constraints is now:

Γ={A(Cbird→fly),A(penguin→bird),A(penguin→¬fly)}

First, we need to construct a finite plausibility modelM∈Plaus. It is always possible to construct



Figure 4.1. [TODO—caption! Separate into (a) left, and (b) right] T,P,S,N denote Tweety, Piper, Skipper, and

Nils, respectively. For (b), mention that the activation function is A(x)=1 iff x>−1.

a plausibility model with constraints in LC—see Appendix [TODO] for the details. However, the

proof in Appendix [TODO] is not constructive, so I do not currently have an algorithm for doing

this. For small examples like this one, it's not too difficult to hand-craft a model.

Take the following model, illustrated by Figure 4.1 (a). Let W ={Tweety,Piper,Skipper,Nils},

and let the propositional assignment V be given by ⟦bird⟧ = {Tweety, Piper, Skipper, Nils}, ⟦pen-

guin⟧={Skipper,Nils}, and ⟦fly⟧={Tweety,Piper}. That is, Skipper and Nils are the only penguins,

and Tweety and Piper are the only birds that fly. Finally, let the plausibility order (≺)={(Tweety,

Skipper), (Tweety,Nils), (Piper,Skipper), (Piper,Nils)}.

In order to transform this model into a neural network, we apply the NAND construction. Let

N = W , V = V , E = ≺, and add a new node bias. Connect the bias node to Skipper and Nils (since

they are not ≺-minimal). Then set all weights to W(m, n) = −1
3 . Finally, pick A(x) = 1 iff x > −1,

and take an arbitrary learning rate 𝜂. The resulting neural network N is shown in Figure 4.1 (b).

Let's check that N does in fact satisfy the constraints Γ, i.e., N ⊧Γ. Well,

• N ⊧ A(penguin→bird), since ⟦penguin⟧ = {Skipper, Nils} ⊆ ⟦bird⟧ (for all w ∈ N, w ⊩ pen-

guin implies w⊩bird).

• Similarly, N ⊧A(penguin→¬fly), since ⟦penguin⟧={Skipper,Nils}⊆⟦flies⟧∁.

• Finally, let's checkN ⊧A(Cbird→fly). In terms of neural network semantics, this says that
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for all w∈ N, if w∈(Clos(⟦bird⟧∁ ∪{bias}))∁ then w∈⟦fly⟧. Observe that

(Clos(⟦bird⟧∁ ∪{bias}))∁ = (Clos({bias}))∁

= {bias,Skipper,Nils}∁

= {Tweety,Piper}

From here we see that all w in this set {Tweety,Piper} fly.

Example 4.4. (Building a Neural Network Model II) [TODO]

5 The Modelling Power of Neural Networks

So far, I have presented one important neural network model construction: the canonical con-

struction. The canonical construction shows us how a neural network model N can simulate any

finite choice of formulas Γ over the logic LC. This gives us a sense of how powerful Net is—of

what sorts of constraints neural networks (as logical models) are capable of representing. In this

section, I will give a richer sense of how powerful neural networks are by comparing Net against

other model classes. Along the way, I will catalog specialized neural network constructions that

we can use to have Net simulate (or be simulated by) these other model classes. I aim to answer

the questions:

• What kinds of models can Net simulate?

• What kind of models can be simulated by Net?

I will introduce a number of models for modal logics in the literature: relational models Rel, neigh-

borhood models Nbhd, plausibility models Plaus, and a special case of social network models

SocialNetMAJ. I will include in the mix:

• Pointed neural network models Net∗, briefly discussed in Section []

• “Universal” models Univ, which is degenerate case of Rel where all modalities are inter-

preted as the universal modality A.

To make the comparison fair, all models will share a generalized multi-modal language L□ given

by

𝜑,𝜓≔ p ∣ ¬𝜑 ∣ 𝜑∧𝜓 ∣ {□i}i∈I𝜑



where I is some fixed set of indices. Notice that LC is a special case of L□, where the operators

A,□,C are different choices for □i that come with additional interaction axioms. More generally,

you can think of each □i as representing a different modality (e.g., belief vs knowledge). Or, you

could instead think of each i ∈ I as an agent in a multi-agent setting, and □i as agent i's belief (or

knowledge, etc.).

Generalized Neural Network Models. This change in language requires a somewhat generalized

neural network semantics. In this work so far, I have only defined the neural network closure

operators Clos and Reach. But in principle we could define other closure operators, each reflecting a

different kind of modality or conditional. I want to characterize what □i-formulas a neural network

can in principle model, and for that I need a more general definition.

Definition 5.1. A neural network model is N = //N, {Ei}i∈I, {Wi}i∈I, {Ai}i∈I, 𝜂, V//, where we now

have a choice of Ei, Wi, Ai for each i∈ I.

Definition 5.2. A pointed neural network model is N = //N, bias, {Ei}i∈I, {Wi}i∈I, {Ai}i∈I, 𝜂, V//,

whose states are given by StateN ={S ∣ S⊆ N and bias∈S}.

Everything from Section [] generalizes: Each choice Ei,Wi, Ai specifies a state transition func-

tion Fi,S0:StateN →StateN , which in turn defines a closure function Closi:StateN →StateN . For the

purposes of this section, let Net refer to the class of this generalized neural network model, and

Net∗ refer to the pointed variation.

The semantics for □i generalizes as follows.

N ,n⊩ □i𝜑 iff n∈ Closi(⟦𝜑⟧)

Similarly, for pointed models I define

N ,n⊩ □i𝜑 iff n∈ Closi(⟦𝜑⟧∪{bias})

As expected, □i is defined to be the dual of □i.

Note. I claimed above that the operators A, □, C can be viewed as instances of □i. For C, this

is fairly obvious, since the semantics for //C//are exactly the same as □i. To see how A can be
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simulated via □i, see the subsection on simulating Univ (where □i is defined to be exactly A).

Finally, the □ operator was originally given semantics in terms of graph-reachability Reach. To see

how it can be simulated via □i, see the subsection on simulating Rel, and then reverse the edges in

that construction. (The reason for this is that relational models “look upward” for some world u

where 𝜑 holds, whereas Reach “looks downward.”)

An Outline and Summary. I will now get in the weeds and formally compare these model classes.

First, I will formally define simulations that will allow us to compare the modeling power of Net

against the rest. Then, for each model class, I will prove simulation results that position them

around Net. Figure [] illustrates a summary of these results. The figure displays a lattice where

each class can simulate the models in the classes above it.

5.1 Measuring Modeling Power via Simulations

To compare the modeling power of neural networks with these other classes, I need to measure

their ability to simulate each other. Formally,

Definition 5.3. Let C1,C2 be two model classes, with semantics defined over L□. A simulation f :

C1 →C2 is an injective function such that for all modelsM∈C1 and formulas 𝜑∈L□,

M⊧𝜑 iff f (M)⊧𝜑

If a simulation exists, we say that C2 simulates C1. If C2 simulates C1, but not conversely, we say

that the simulation is strict.

In model theory, the theory of a class of models Th(C ) is the set of validities, i.e., formulas

that must be true for every M∈C . This is often used as a measure of the modeling power of C :

if Th(C1)⊆Th(C2), then C1 is more general than C2 in the sense that it requires fewer axioms. (In

other words, C1 can satisfy formulas that C2 cannot.)

Definition 5.4. Let C be a class of models. The theory of C (over L□) is

Th(C )={𝜑∈L□ ∣ for allM∈C we haveM⊧𝜑}



The following proposition states the relationship between simulations and Th(C ). In words,

if C2 simulates C1, then C2 is the more general one. This proposition also gives us an easy test

for showing that C2 does not simulate C1: just try to show Th(C2) ⊆ Th(C1) by finding a formula

𝜑∈Th(C1) such that 𝜑∈Th(C2).

Proposition 5.5. Let C1, C2 be two model classes. If C2 simulates C1, then Th(C2)⊆Th(C1).

Proof. Suppose C2 simulates C1. This means there is an injection f :C1 →C2 such that M⊧ 𝜑 iff

f (M) ⊧ 𝜑. Now let 𝜑 ∈ Th(C2), and let M∈ C1. Well, f (M) ∈ C2, and so by the definition of

Th(C2), f (M)⊧𝜑. By our simulation, this gives usM⊧𝜑, and we are done. □

Note. The notion of simulation that I've defined here only tells the semantic side of the story. If we

want to compare different languages in addition to model classes, we need to define infomorphisms

between two logics (L,C ). (Pairs of languages, along with their model class, are also known as

institutions in Institution Theory [cite institution theory, “Information Flow: The Logic of Dis-

tributed Systems”, “Categories, Allegories”, “Institution Theory”]). Infomorphisms are defined as

follows.

Definition 5.6. Let C1,C2 be model classes, and let L1,L2 be languages. There is an infomorphism

(aka translation) from (L1,C1) into (L2,C2) if there exist f :C2 →C1, 𝜏:L1 →L2 such that for all

𝜑∈L1,M∈C2

f (M)⊧𝜑 iff M⊧𝜏(𝜑)

Since I have fixed the language L□, I won't necessarily need to use this idea. But I mention it

here in order to set readers who are curious about the expressivity of (L□,Net) on the right foot.

5.2 Relational Models (Rel)

Relational models are just Kripke models, which I briefly introduced in Section [].
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A relational model isM= //W , {R}i∈I,V//, where

• W is some finite set of worlds (or states)

• Each Ri ⊆W ×W (the accessibility relations)

• V :Proposition→𝒫(W) (the valuation function)

Define Rel to be the class of all such models, and define RelS4 to be the class of all such models

where R is additionally reflexive and transitive. The semantics for both classes is given by: [Todo,

extend to the full language of LC!]

M,w⊩ p iff w∈V(p)
M,w⊩¬𝜑 iff M,w⊩𝜑
M,w⊩𝜑∧𝜓 iff M,w⊩𝜑 andM,w⊩𝜓
M,w⊩□i𝜑 iff for all uwith wRiu,M,u⊩𝜑

[Mention axioms, soundness, completeness (refer to the appendix!)]

5.3 Universal Models (Univ)

5.4 Neighborhood Models (Nbhd)

5.5 Plausibility Models (Plaus)

[(this is also where I can talk about Net∗)]

5.6 Majority-Vote Social Networks (SocialNetMAJ)

• Let's now do model translations to get at the expressivity of neural networks (over Modal

and Conditional logic). Here's a hierarchy of the models above, to start:



• To make the comparison with neural networks fair, I will only consider the reflexive and

transitive variants RelS4, NbhdS4 of relational and neighborhood models.

• [DIAGRAM]

• The translations from NbhdS4 to Plaus and from Plaus to RelS4 are folklore. Instead of

giving these translations, I will instead translate from Net to RelS4 and from NbhdS4 to

Net in order to explicilty show how to translations involving neural networks (neural net-

work model constructions). The equivalence between Plaus and Net is already known, but

the backwards direction has never been proven with an explicit model construction. So

although the results in this section are already known, the proofs I give here are totally new.

• First, show translation from Net to RelS4, and show there is no translation the other way

around (axiom in RelS4 that is not an axiom in Net)

• Next, show translation from NbhdS4 to Net, and show there is no translation the other way

around (axiom in Net that is not an axiom in NbhdS4)

• Next, from the model-building construction in the completeness chapter, we have a trans-

lation from Net to Plaus.

• Explain that completeness implies that in principle we have a translation the other way

(Plaus to Net), but it doesn't actually give the explicit model building procedure! Here is

where I will give my own.

• Make a note here about the social majority logic above: There is a strict translation from

Net to the social majority logic (Net is more general, in the sense that it requires fewer

axioms).

• Give a brief note here on the expressive power of the conditional logic Net vs the modal

logic Net.

Plausibility Models. A plausibility model, first introduced in [37], isM= //W , {R}i∈I,V//, i.e. the

models themselves are just relational models. As before, I assume that W is finite, and as with

RelS4, each Ri is reflexive and transitive. The key difference is that we interpret □i𝜑 to hold in the

best (or most plausible) states satisfying 𝜑. Formally, let bestRi(S) = {w ∈S ∣ for all u∈ S,¬uRiw}
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(the Ri-minimal states over S). We additionally impose the following “smoothness condition” [37]

on bestRi:

Postulate 5.7. For all modelsM, i∈ I, sets S, and all w∈W , if w∈S then either w∈bestRi(S), or

there is some vRiw better than w that is the best, i.e. v∈bestRi(S).

The new semantics for □i is

M,w⊩□i 𝜑 iff w∈bestRi(⟦𝜑⟧)

where ⟦𝜑⟧={u ∣M,u⊩𝜑}. In practice, plausibility semantics coexist alongside relational seman-

tics, so I allow some □i𝜑 to be given relational semantics instead. Let Plaus be the class of all such

models. Since we include relational operators, note that RelS4 ⊆Plaus.

Any plausibility operator □i picks out a corresponding conditional: □i𝜑→𝜓 reads “the best 𝜑

are 𝜓,” which in the KLM tradition is the semantics for the conditional 𝜑⇒𝜓.

[Mention axioms, soundness, completeness (refer to the appendix!)]

Social Network Models.

• Introduce social network models, an example with a [DIAGRAM] would be nice!

• In these social network logics [4; 8; 18], nodes in the graph represent individual agents,

and each formula is mapped to the set of agents that adopt a certain social attitude. Agents

influence each other, and the spread of their attitudes is modeled much in the same way as

forward propagation of a signal in a neural network.

• Give a concrete social network logic: Social majority. Make sure to emphasize that social

majority is one of many (!) choices, and is a relatively simple choice to model.

• Both kinds of models use fundamentally the same approach (“This work shares essentially

the same premise and techniques as neural network semantics”): distributed information

over several connected nodes, modal operator interpreted as the fixed-point of some diffu-

sion

• But the two approaches still differ in interesting ways. First, in some sense the two seman-

tics are operating on different “levels”: social networks model interactions between multiple



agents, whereas neural networks model interactions between components of the same

(single) agent. Second, the two differ in subject matter. Social network semantics focuses

on different social links between agents, and how these links change [4]. Neural network

semantics, my own work included, instead focuses on inferences and updates inspired by

artificial and natural neural networks.

Neighborhood Models.

A neighborhood model isM= //W , {N}i∈I,V//, where W and V are as before and each Ni:W →

𝒫(𝒫(W)) is an accessibility function. The intuition is that Ni maps each state w to the “formulas”

(sets of states) that hold at w. Define Nbhd to be the class of all neighborhood models.

Moreover, the core of N is ∩N(x) = ⋂X∈N(w) X. As with Rel, let NbhdS4 be the class of all

neighborhood models that are additionally reflexive (∀w, w ∈ ∩N(w)) and transitive (∀w, if X ∈

N(w) then {v ∣ X ∈ N(v)}∈ N(w)).

The semantics for both classes is the same as the previous classes, except the □i case is now:

M,w⊩□i𝜑 iff ⟦𝜑⟧∈ Ni(w)

where again ⟦𝜑⟧={u ∣M,u⊩𝜑}.

Proposition 5.8. () There is a strict translation from (Modal,Net) to (Modal,RelS4).

Proof. [] □

Proposition 5.9. () There is a strict translation from (Modal,NbhdS4) to (Modal,Net).

Proof. [] □

Proposition 5.10. There is a translation from (LC,Net) to (LC,Plaus).

Proof. [This is just a corollary of completeness: Mention that we just use the NAND construction

from the Completeness proof.] □

An easy corollary of completeness is that exactly the same axioms hold over Plaus and Net,

i.e. [This is no longer true!!! Rewrite this whole story here!]

Corollary 5.11. Th(Plaus)=Th(Net).
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Proof. We have:

𝜑∈Th(Plaus) iff ⊧Plaus𝜑 (By definition)
iff ⊢C𝜑 (By weak completeness for Plaus)
iff ⊧Net𝜑 (By weak completeness for Net)
iff 𝜑∈Th(Plaus) (By definition)

□

Based on this, and the completeness result, we might naturally expect that there is a translation

from (LC,Plaus) to (LC,Net). But surprisingly, there is no such translation!

Theorem 5.12. () There is no translation from (LC,Plaus) to (LC,Net).

Proof. [First, I can prove it if 𝜏(𝜑)=𝜑! I should try to generalize this for any 𝜏!] For 𝜏(𝜑)=𝜑,

let f :Net→Plaus be any arbitrary way to transform a neural net into a plausibility model. I need to

show that there is some netN ∈Net and some formula 𝜑∈LC such that one of f (N )⊧𝜑 orN ⊧𝜑

holds and the other does not. Let 𝜑 = Cp for some proposition p, and let N be the net in Figure

[DIAGRAM] (a). Since ⟦Cp⟧M=best≺f (N )(⟦p⟧) and ⟦Cp⟧N =(ClosN(⟦p⟧∁))∁, it's enough to show

that

There is some ⟦p⟧∈StateN such that best≺f (N )(⟦p⟧)≠(ClosN(⟦p⟧∁))∁

Well, for this particular net we have StateN = {{bias}, {bias, a}, {bias, b}, {bias, a, b}} (all subsets of

the nodes that contain the bias node). Any ⟦p⟧∈StateN must be one of these four sets.

Suppose for contradiction that for all such ⟦p⟧, best≺f (N )(⟦p⟧) = (ClosN(⟦p⟧∁))∁. In particular,

best≺f (N )({bias, a, b}) = (ClosN({bias, a, b}∁))∁ = {bias, a, b}. (See the calculation in Figure [DIA-

GRAM] (b).) But this implies that bias, a, and b must all be mutually incomparable via ≺f (N ).

But then

best≺f (N )({bias,b})={bias,b}≠{bias}=(ClosN({bias,b}∁))∁

(The first equality comes from bias, a,b incomparable; the second follows from the calculation in

Figure [DIAGRAM] (b).) □

In particular, the neural network used in the proof [refer to it] cannot be transformed into an

equivalent plausibility model. Moreover, this net isn't a particularly strange one—it's just an ordi-

nary feed-forward weighted net! So we have an intuition that neural networks are more general in



some sense. But Corollary 5.11 says that no axiom 𝜑 ∈LC witnesses this difference. This means

that there is some difference between them, but LC is not expressive enough to point to it. [the

interesting conclusion of this reasoning—what axiom can give us the difference??]

Theorem 5.13. () There is a strict translation from (Modal, Net) to the social majority logic

[give it a name]

Proof. [] □

Theorem 5.14. () There is a strict translation from (Modal,Net) to (Conditional,Net). [does it

go this way, or the other way??]

Proof. [] □

----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

[Integrate the following into this chapter!]

The Graph-Reachability Construction. I will show here how the more general Clos operator

can be used to simulate Reach and Reach↓. Suppose we are given a graph //N, E//and a valuation

function V . How can we build a neural network whose closure Clos is graph-reachability Reach?

We want to build a net:

N = //N,bias,E,W , A, 𝜂,V//

[what to do about bias and 𝜂?] For the weights, pick

W(m,n)={{{{{{{{{{{{{{{{{{{{ 1 if mEn
0 otherwise

Then pick the activation function A(x)=1 iff x>0. Recall that n∈FS0(S) iff n∈S0 or is activated

by its predecessors in S. In this case, n ∈ FS0(S) whenever n ∈ S0 or at least one E-predecessor m

of n is in S. I call this the graph-reachability construction because the closure Clos(S) produces

exactly those nodes graph-reachable from S:

Proposition 5.15. For all states S∈State, Clos(S)= Reach(S).

Proof. First, the (⊆) direction. Let n∈ Clos(S)=FS
k(S) for some k ∈ℕ. By induction on k.

Base Step. n∈FS
0(S)=S. So there is a trivial Ei-path (length=0) from n∈S to itself.
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Inductive Step. Let k ≥ 0. We have n∈FS
k(S) =FS(FS

k−1(S)). By construction of FS, we have

two cases: Either n∈FS
k−1(S) or at least one E-predecessor x of n is in FS

k−1(S). In the first

case, our inductive hypothesis gives a path from some m∈ S to n. In the second case, our

inductive hypothesis gives a path from some m∈S to x. But since xEn, we can extend this

path to be from m to n.

As for the (⊇) direction, suppose there is an E-path from some m∈S to n. We proceed by induction

on the length of that path.

Base Step. The path is trivial, i.e. has length 0. So n ∈ S. But S = Fi
0(S) ⊆ Closi(S), and so

n∈ Closi(S).

Inductive Step. Say the path is of length l ≥0. Let x be some immediate Ei-predecessor of n.

By the inductive hypothesis, x ∈ Closi(S), and so x ∈Fi
k(S) for some natural k. But since x

is an Ei-predecessor of n, by construction of Fi, n∈Fi(Fi
k(S))=Fi

k+1(S). Since Closi(S) is a

closure, it includes Fi
k+1(S). So n∈ Closi(S). □

As for Reach↓, we first reverse the edges E, and then do the graph-reachability construction. In

other words, let mE′n iff nEm,

W(m,n)={{{{{{{{{{{{{{{{{{{{ 1 if mE′n
0 otherwise

and pick A, 𝜂, V the same as above. For this construction, the closure Clos(S) produces exactly

those nodes which reach some node in S. The proof is similar to the proof for Reach. [Check that

that's actually true!!]

Proposition 5.16. For all states S∈State, Clos(S)= Reach↓(S).

The Social Majority Construction. [Introduce the idea of social networks here if I haven't already,

and mention the “social majority” propagation/diffusion (tell it slowly, like a story). I will show

that our neural networks can simulate this simple social majority operator (make the social majority

operator a bit more formal).]

As before, we want to build a neural network N where the graph //N,Ei//, bias, and evaluation

V are given. This time, pick Wi(m,n)= 1
|preds(n)| , and then pick Ai(x)=1 iff x≥ 1

2 . Visually, for each



Figure 5.1. [TODO—caption! Separate into (a) left, and (b) right]

node n and its predecessors m1, . . . ,mr we have

[DIAGRAM!]

This gives us n∈FS0(S) if n∈S0 or if the majority (more than half) of E-predecessors are in S.

In this case, the closure Clos can be interpreted as the diffusion of an opinion or attitude through

a social network. This is one of the choices that [8] consider for modelling influence in social

networks. [this paragraph is a bit terse now that I'm writing a longer version of this.]

----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

The NAND Construction. Suppose we have plausibility modelM= //W ,R,≺,V//and we want to

construct an equivalent neural network N . In [38], Hannes first does this for inhibition nets, i.e.,

nets with inhibitory edges that block excitatory edges. (He handles weighted nets later.) I will first

consider his construction, and then modify it for weighted nets.

Here's the inhibition net construction: First, create a fresh node bias. Take N =W ∪{bias} (soN

is still finite), V =V , let the excitatory edges be exactly uEv iff vRu (E is the reverse of R). Next,

create an edge from bias to every n that is not E-minimal (in other words, if n has any predecessors

at all, then bias is one of them). Then for each node n and its predecessors bias = m0, m1, . . . , mr,

connect inhibition edges as illustrated in Figure 5.1 (a).
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That is, each node mi is inhibited by mi−1 (bias = m0 inhibited by mr). This has the following

effect: if all mi activate, they each inhibit each other, and so n does not activate. If only some mi

activate, then there is some mi that is uninhibited, and so n activates. And finally, since bias is

always active we cannot have no mi active. In other words, n∈FS0(S) iff n∈S0, or not all non-bias

predecessors m are in S. (Since bias is always active, this results in a NAND-like output.)

We can simulate this effect with weighted neural networks. Let W(m, n) = −� 1
r +1� (the extra

+1 accounts for the bias), and let pick A(x)=1 iff x>−1. For now, the choice of learning rate 𝜂 is

arbitrary (see Section [todo]). This construction is illustrated in Figure 5.1 (b). Take a moment to

check that n∈FS0(S) iff n∈S0, or at least one non-bias predecessor m∈S. [also, the negative values

ensure A is nondecreasing!]

What is the relationship between this neural network's fixed points Clos(S) and the plausibility

model's minimal states best≺(S)? It turns out that for this NAND construction, Clos is precisely the

dual of best≺:

Lemma 5.17. LetM= //W ,R,≺,V//be a plausibility model such that R=(≺reverse). LetN be given

by the NAND construction above. For all S⊆StateN , ClosN(S)=(best≺(S∁))∁. In a slogan:

ClosN(S) is the dual of best≺(S).

Note. There is some ambiguity over what universe the complements in (best≺(S∁))∁ are taken. The

bias node of course occurs in S, since S is a state of the net. But we should also allow for bias to

occur in the final complement of (best≺(S∁))∁, in order for this term to be exactly ClosN(S). So I

interpret all of these complements over universe N (rather than W). Explicitly, the claim is:

For all S⊆StateN , ClosN(S)= N\(best≺(N\S))

Proof. Once again, I will take advantage of the fact that fixed points of the transition function FS

are unique. First, since Clos(S) is a fixed point under S, we have FS(Clos(S))= Clos(S). But I will

show that (best≺(S∁))∁ is also a fixed point under S, i.e. FS((best≺(S∁))∁)=(best≺(S∁))∁. Since we

assumed that there is a unique fixed point under S, it will follow that these two sets must be the

same. In other words, Clos(S)=(best≺(S∁))∁.



Recall that the type of FS is FS: StateN → StateN . We need to make sure that (best≺(S∁))∁ ∈

StateN , i.e., it is in fact a state of the neural network and we can apply FS to it. In particular, we

need to check that bias ∈(best≺(S∁))∁. Well, S⊆StateN , and so bias ∈S. This means bias ∈S∁, and

by the contrapositive of best-inclusion, bias∈(best≺(S∁)), which is what I wanted to show. So the

term FS((best≺(S∁))∁) is well-defined.

We are now ready to show that FS((best≺(S∁))∁)=(best≺(S∁))∁. For the (→) direction, suppose

n∈FS((best≺(S∁))∁). By construction of FS, we have two cases:

Case 1. n ∈ S. In this case, we trivially have n ∈ best≺(S∁), since n is not even in S∁. And so

n∈(best≺(S∁))∁.

Case 2. At least one non-bias predecessor mEn is m∈(best≺(S∁))∁. So m∈best≺(S∁). Since m

is a predecessor of n (mEn), nRm (reverse it). But then since R=(≺reverse), m≺n. So m is ≺-

better than n (that is, m≺n), which implies that n cannot be a best S∁-element: n∈best≺(S∁).

So n∈(best≺(S∁))∁.

As for the (←) direction, suppose contrapositively that n∈FS((best≺(S∁))∁). By construction, this

means that n∈S and for all m with m≺n (including bias of course), m∈(best≺(S∁))∁.

[all predecessors m with mEn m of n (including bias of course) are in (best≺(S∁))∁. ]

We already have n∈ S∁; from here I'd like to show that n is the best S∁-element. Suppose for

contradiction that n ∈ best≺(S∁). By the smoothness condition (see Appendix [todo]) there must

be some m ∈ S∁, m ≺ n that is the best, i.e., m ∈ best≺(S∁). Since m ≺ n and R = (≺reverse), we have

nRm, and so m is an E-predecessor of n (mEn). Note that we always have bias∈S, and in particular

this means bias∈best≺(S∁) (by best-inclusion, since best≺(S∁)⊆S∁). So m cannot be the bias node.

Complementing, we see that m∈(best≺(S∁))∁. In other words, some non-bias E-predecessor of n is

not in (best≺(S∁))∁. By construction of FS, this means n∈FS((best≺(S∁))∁), which contradicts our

initial hypothesis. □

Lemma 5.18. LetM= //W ,R,≺,V//be a plausibility model such that R=(≺reverse). LetN be given

by the NAND construction above. For all S⊆StateN :

• ReachN(S)={w ∣ there is some u∈S with uRw}
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• ReachN↓ (S)={w ∣ there is some u∈S with wRu}

Proof. I will prove it for Reach; the proof for Reach↓ is similar. Let w∈W ⊆ N.

w∈ ReachN(S) iff there exists u∈S with an E-path from w to u
iff there exists u∈S with an R-path from u to w (By constr of N )
iff u∈S and uRw (Since R is transitive)

□

The following lemma says that the constructed net N is in fact equivalent to M, i.e., the two

satisfy exactly the same formulas at exactly the same worlds over the modal language of LC. Notice

that the claim is only made for worlds w ∈ W and not for the bias node, since we cannot eval-

uate ⊩Plaus at the bias node.

Lemma 5.19. () LetM= //W ,≺,V//be a plausibility model such that R=(≺reverse), and let N be

given by the NAND construction above. For all modal formulas 𝜑∈LC and all w∈W ,

N ,w⊩Net 𝜑 iff M,w⊩Plaus 𝜑

Proof. By induction on 𝜑. I will show the key inductive cases □↓𝜑, and //C//𝜑. The inductive case

for E𝜑 is straightforward, and the □𝜑 case is similar to the case for □↓𝜑 (substitute Reach↓ for

Reach).

Case −−

− − φ.

N ,w⊩Net □𝜑 iff w∈ Reach↓(⟦𝜑⟧N ∪{bias}) (By neural net semantics)
iff ∃u∈⟦𝜑⟧N ∪{bias} with wRu (By Lemma 5.18)

iff [TODO]
iff
iff ∃u∈W with wRu andM,u⊩𝜑
iff M,w⊩Plaus □𝜑 (By plausibility semantics)

Case −−−
− ↓φ.

N ,w⊩Net □↓𝜑 iff w∈ Reach(⟦𝜑⟧N ∪{bias}) (By neural net semantics)
∃u∈⟦𝜑⟧N ∪{bias} with uRw (By Lemma 5.18)

iff ∃u∈W with uRw andM,u⊩𝜑
iff M,w⊩Plaus □↓𝜑 (By plausibility semantics)



Case //C //φ. In this case, we need to take care to be very explicit about what universe our

complements are taken over. So I will write N\S and W\S in place of S∁.

N ,w⊩Net //C//𝜑 iff w∈ Clos(⟦𝜑⟧N ∪{bias}) (By neural net semantics)
iff w∈ N\(best≺(N\(⟦𝜑⟧N ∪{bias}))) (By Lemma 5.17)
iff w∈ N\(best≺(

(N\⟦𝜑⟧N)∩(N\{bias}))) (Grouping terms)
iff w∈ N\(best≺((N\⟦𝜑⟧N)∩W)) (Since W = N\{bias})
iff w∈ N\(best≺(W\⟦𝜑⟧N))
iff w∈W\(best≺(W\⟦𝜑⟧N)) (Since w∈W and w≠bias)
iff w∈W\(best≺(W\⟦𝜑⟧M)) (By inductive hypothesis)
iff M,w⊩Plaus ¬C¬𝜑 (By plausibility semantics)
iff M,w⊩Plaus //C//𝜑

□

6 Reflections on Model Building and Interpretability

[Todo]
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Chapter 5

Dynamic Update in Neural Network Semantics

1 Introduction

[I now have space to express these points more slowly, in detail.] The neural network semantics

presented so far shows us how we can use neural networks as models for modal logic. Neural net-

work inference can be expressed in this logic using //C//𝜑, which denotes the forward propagation

of the signal ⟦𝜑⟧ through the net. However, as discussed in the introduction, the mystery about

neural networks is how their inference interacts with their learning. In this section, I will show how

to extend these semantics to model learning and update in a neural net.

As previously mentioned, I formalize neural network update using the methodology of Dynamic

Epistemic Logic. Our static operators □, □↓, and //C//are interpreted by examining the state of

the neural net. The DEL trick is to introduce a new “dynamic” operator [P] which changes the

net in response to some observed formula P. First, we extend the language LC to LUpdate, which

includes these dynamic operators:

𝜑,𝜓≔ p ∣ ¬𝜑 ∣ 𝜑∧𝜓 ∣ E𝜑 ∣ □𝜑 ∣ □↓𝜑 ∣ //C//𝜑 ∣ [P]𝜑

Here, [P]𝜑 reads “after the agent observes P, 𝜑 is true”.

Let Update:Net×State →Net be any function which takes a neural network, some state S, and

“updates” the net somehow in response to S. We can interpret [P] as performing this update by

adding the following line to the semantics:

N ,n⊩[P]𝜑 iff Update(N , ⟦P⟧),n⊩𝜑

In other words, in order to evaluate [P]𝜑, we simply evaluate 𝜑 in the updated net Update(N , ⟦P⟧).

From a DEL perspective, this is a standard move to make. But from a machine learning per-

spective, there are a couple caveats that I should mention. First, [P] does not model learning in

the sense of “iterated update until convergence”, but rather only models a single step of update.
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Second, we should think of [P] as modeling unsupervised learning—the model updates in response

to an input P, but no “expected answer” y is given alongside P. It is an open problem to for-

malize supervised learning (in this machine learning sense) in DEL in a non-trivial way.

2 Hebbian Learning: A Simple Neural Network Update Policy

[I now have space to express these points more slowly, in detail.] So far, I've discussed learning

and update in very general terms. For my thesis, I will model a simple update policy over neural

networks: Hebbian learning. The point in starting with Hebbian learning is to get the details right

on a simpler example before lifting these ideas to, say, gradient descent through backpropagation

[58].

Hebb's classic learning rule [32] states that when two adjacent neurons are simultaneously

and persistently active, the connection between them strengthens (“neurons that fire together wire

together”). In contrast with backpropagation, Hebbian learning is errorless and unsupervised.

Another key feature is that Hebbian update is local — the change in a weight ΔW(m,n) depends

only on the activation of the immediately adjacent neurons. For this reason, the Hebbian family

of learning policies is often considered more biologically plausible than backpropagation.

There are many variations of Hebbian learning, but I will only consider the most basic form of

Hebb's rule: ΔW(m,n)=𝜂xmxn, where 𝜂 is the learning rate and xm, xn are the outputs of adjacent

neurons m and n. This is the unstable variation of Hebb's rule; repeatedly applying the rule will

make the weights arbitrarily large. I will not consider stabilizing variants such as Oja's rule [54].

Single-Step Hebbian Update. First, consider what happens in a single step of Hebbian update.

Given a net N and a state S, we first propagate S forward throughN . Any edges that are involved

in this propagated activation pattern Clos(S) simply have their weights strengthened. Formally,

Definition 2.1. Let Hebb:Net×State →Net be given by

Hebb( //N,bias,E,W , A, 𝜂,V//, S)= //N,bias,E,W ′, A, 𝜂,V//

where W ′(m,n)=W(m,n)+𝜂⋅𝜒Clos(S)(m) ⋅𝜒Clos(S)(n).
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Note that Hebb does not affect the edges, activation function, or evaluation of propositions. This

means the resulting net is still binary, and closures Clos(S) still exist and are unique. Therefore

Hebb is well-defined. This also means that Hebb does not affect the Reach or Reach↓ operators.

Proposition 2.2. ReachHebb(N ,A)(B)= ReachN(B)

Proof. A single step of Hebbian update Hebb(N , A) doesn't change the edge relation E of the

graph. So if n∈ N, any path from m∈B to n in Hebb(N , A) is the same path in N . □

And similarly:

Proposition 2.3. ReachHebb(N ,A)
↓ (B)= ReachN↓ (B)

The following is easy to see [I now have space to explain] (since 𝜂≥0).

Proposition 2.4. Let m,n∈ N. We have:

• WN(m,n)≤WHebb(N ,S)(m,n)

• If either m∉ Clos(S) or n∉ Clos(S), then WHebb(N ,S)(m,n)=WN(m,n).

Proof. For the first part, observe:

WN(m,n) ≤ WN(m,n)+𝜂 (since 𝜂≥0)
≤ WN(m,n)+𝜂⋅𝜒Clos(S)(m) ⋅𝜒Clos(S)(n) (since for all S,n,𝜒S(n)≥0)
= WHebb(N ,S)(m,n)

As for the second part, if either m∈ Clos(S) or n∈ Clos(S), then by definition of Hebb,

WHebb(N ,S)(m,n)
=WN(m,n)+𝜂⋅𝜒Clos(S)(m) ⋅𝜒Clos(S)(n)
=WN(m,n)+𝜂⋅0
=WN(m,n)+𝜂
=WN(m,n)

□

Iterated Hebbian Update. In addition to the single-step Hebb operator, in my thesis work I have

also modelled iterated Hebbian update Hebb∗. The idea is this: what happens when we propagate a

signal S through the net, and then repeatedly strengthen the weights of the edges that are involved?

Recall that our single-step Hebb is unstable; if we repeat Hebb on a single input state S, the net's



weights within Clos(S) will be so high that any activation pattern that makes contact with Clos(S)

will “rip through” it entirely. Repeating Hebb on S further will not change the Clos(S)-structure,

i.e., the update has reached a fixed point. Hebb∗ returns the net at this fixed point.

Instead of reasoning abstractly about this fixed point, I formalize it by explicitly defining the

number of iterations iter needed to reach it. The idea is to set iter to be so high, all updated weights

W ′(m,n) overpower any negative weights that would otherwise cancel their effect. The following

definitions might look like black magic, but they are set up to capture this intuition (I verified in

Lean that this is the right choice for iter, see [35]).

Definition 2.5. Let N be a net, n∈ N, and let m1, . . . ,mk list the predecessors of n. The negative

weight score of n is the sum of all the negative weights of n's predecessors, i.e.,

nws(n)= �
m∈preds(n)

{{{{{{{{{{{{{{{{{{{{ W(m,n) if W(m,n)<0
0 otherwise

Definition 2.6. The minimum negative weight score is simply

mnws=min
n∈N

nws(n)

Proposition 2.7. For all S∈State, m,n∈ N, we have mnws≤W(m,n) ⋅𝜒S(m).

Proof. Let m,n be any nodes in N. We have:

mnws ≤ nws(n)

= �
m∈preds(n)

{{{{{{{{{{{{{{{{{{{{ W(m,n) if W(m,n)<0
0 otherwise (by definition)

= �
m∈preds(n)

{{{{{{{{{{{{{{{{{{{{ W(m,n) ⋅𝜒S(m) if W(m,n)<0
0 otherwise (since each W(m,n)<0

and 𝜒S(m)∈{0,1})
≤ W(m,n) ⋅𝜒S(m) (the sum of negative terms is ≤

any particular term)
□

Definition 2.8. Recall that the activation function A is nonzero, i.e. there is some t ∈Q such that

A(t)=1. We set the number of iterations iter to be exactly

iter={{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
� t − |N| ⋅mnws

𝜂 � if ≥1
1 otherwise
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Note that iter will always be a positive integer, and so iterating iter times is well-defined. This

choice for iter may seem opaque, but we will see in Lemma [which] why it guarantees that the

updated weights overpower competing edge weights.

Definition 2.9. Let Hebb∗:Net×State →Net be given by

Hebb∗( //N,bias,E,W , A, 𝜂,V//, S)= //N,bias,E,W ′, A, 𝜂,V//

where W ′(m,n)=W(m,n)+ iter ⋅𝜂 ⋅𝜒Clos(S)(m) ⋅𝜒Clos(S)(n).

As with Hebb, Hebb∗ does not affect the edges, activation function, or evaluation of proposi-

tions. Therefore Hebb∗ is well-defined. This also means that Hebb∗ does not affect the Reach or

Reach↓ operators.

Proposition 2.10. ReachHebb∗(N ,A)(B)= ReachN(B)

Proposition 2.11. ReachHebb∗(N ,A)
↓ (B)= ReachN↓ (B)

Similar to Proposition [todo], we have the following:

Proposition 2.12. Let m,n∈ N. We have:

• WN(m,n)≤WHebb∗(N ,S)(m,n)

• If either m∉ Clos(S) or n∉ Clos(S), then WHebb∗(N ,S)(m,n)=WN(m,n)

Proof. [] □

The following fact about Hebb∗ is the most important. It is a formal expression of our statement

before: Updated weights WHebb∗(N ,A)(B) are so high that if m is active in Hebb∗ then n must be as

well.

Lemma 2.13. () Let A,B∈State,m,n∈ N. If m∈preds, m,n∈ Clos(A), and m∈ Clos(B), then

A( �
m∈preds(n)

WHebb∗(N ,A)(mi,n) ⋅𝜒Clos(B)(m))=1

(Take care to notice the different subscripts for W and 𝜒!)

Proof. A is a binary step function, which in particular means it is binary, has a threshold, some

t ∈Q with A(t)=1, and is nondecreasing. Since A is nondecreasing, it's enough for us to show

t ≤ �
m∈preds(n)

WHebb∗(N ,A)(mi,n) ⋅𝜒Clos(B)(m)



Well, we have

�
mi∈preds(n)

WHebb∗(N ,A)(mi,n) ⋅𝜒Clos(B)(mi)

= �
mi∈preds(n), and mi=m

WHebb∗(N ,A)(mi,n) ⋅𝜒Clos(B)(mi)

+WHebb∗(N ,A)(m,n) ⋅𝜒ClosHebb∗(N ,A)(B)(m)
≥(|N|−1) ⋅mnws+WHebb∗(N ,A)(m,n) ⋅𝜒Clos(B)(m)

(by Proposition [todo], since we are adding |N|−1 terms)
=(|N|−1) ⋅mnws+WHebb∗(N ,A)(m,n) ⋅1

(since m∈ Clos(B))
=(|N|−1) ⋅mnws+WN(m,n)+ iter ⋅𝜒Clos(A)(m) ⋅𝜒Clos(A)(n)

(by definition of Hebb∗)
=(|N|−1) ⋅mnws+WN(m,n)+ iter

(since m,n∈ Clos(A))
≥(|N|−1) ⋅mnws+mnws+ iter ⋅𝜂 ⋅𝜒Clos(A)(m) ⋅𝜒Clos(A)(n)

(the sum of negative weights is ≤ any particular weight)
= |N| ⋅mnws+ iter ⋅𝜂

(grouping like terms)

So at this point we need to show:

t ≤|N| ⋅mnws+ iter ⋅𝜂

Rearranging this to solve for iter, it suffices to show:

t − |N| ⋅mnws
𝜂 ≤ iter

But we defined iter to be exactly the integer ceiling of this expression on the left (and 1 if the

expression on the left is negative)! □

3 Properties of Hebb and Hebb∗

We have the following algebraic properties for Hebb.

Theorem 3.1. () [revise properties from FLAIRS paper...]

One worry we might have is that, in each iteration, we always update by Clos(S) in the original

net. But it turns out that this Clos(S) doesn't change with each iteration, i.e.
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Proposition 3.2. () ClosHebb(N ,S)(S)= ClosN(S)

Proof. Let FS be the state transition function for N under S, and FS′ be the state transition function

for Hebb(N , S) under S. First, since ClosHebb(N ,S)(S) is a fixed point under S in Hebb(N , S), we

have FS′(ClosHebb(N ,S)(S)) = ClosHebb(N ,S)(S). But I will show that ClosN(S) is also a fixed point

under S in Hebb(N , S), i.e. FS′(ClosN(S)) = ClosN(S). Since we assumed there is a unique fixed

point under S in Hebb(N ,S), it will follow that these two states must be the same. In other words,

ClosHebb(N ,S)(S)= ClosN(S).

For the (←) direction, suppose n ∈ ClosN(S). Since ClosN(S) is a fixed point under S in N ,

ClosN(S) = FS(ClosN(S)). By definition of F, either n ∈ S (in which case we are done), or n is

activated by its predecessors m in ClosN(S) over N , i.e.

A(((((((((((( �
m∈preds(n)

WN(m,n) ⋅𝜒ClosN(S)(m)))))))))))))=1

By the first part of Proposition [todo], each WN(m, n) ≤ WHebb(N ,S)(m, n). So the inner sum using

the former is ≤ the inner sum using the latter. Since A is nondecreasing, we have

A(((((((((((( �
m∈preds(n)

WHebb(N ,S)(m,n) ⋅𝜒ClosN(S)(m)))))))))))))=1

But this implies that n∈FS′(ClosN(S)).

As for the (→) direction, suppose n∈FS′(ClosN(S)). By definition of F′, either n∈S (in which

case we are done), or n is activated by its predecessors m in ClosN(S) over Hebb(N ,S), i.e.

A(((((((((((( �
m∈preds(n)

WHebb(N ,S)(m,n) ⋅𝜒ClosN(S)(m)))))))))))))=1

Suppose for contradiction that n ∈ ClosN(S). By the second part of Proposition [todo], each

WHebb(N ,S)(m,n)=WN(m,n), and so we have

A(((((((((((( �
m∈preds(n)

WN(m,n) ⋅𝜒ClosN(S)(m)))))))))))))=1

but this implies that n∈FS(ClosN(S))= ClosN(S), which contradicts n∈ ClosN(S). □

and so Hebb∗ is equivalent to repeatedly applying Hebb until we reach a fixed point [35]. [Elaborate

on this point, it's said a little too quickly for the reader to internalize it! (maybe a picture would

help?)]



We have the following algebraic properties for Hebb∗. Before proving these, I'll give some

intuition for what these properties say about Hebb∗. [(1) is just used to show (2)] Part (2) expresses

a lower bound for ClosHebb∗(N ,A)(B), whereas (3) gives an upper bound within Clos(A). [There's got

to be a better way to explain what these mean... this isn't clear or intuitive at all.]

Proposition 3.3. () ClosHebb∗(N ,S)(S)= ClosN(S)

Proof. The proof is the same as the proof for Hebb (see Proposition [todo]). In place of Proposi-

tions [todo] and [todo], we instead apply Propositions [todo] and [todo], respectively. □

Theorem 3.4. () Let N ∈Net, and suppose N is fully connected. For all A,B∈State,

ClosHebb∗(N ,A)(B)= Clos(B∪(Clos(A)∩ Reach(Clos(A)∩ Clos(B))))

Proof. Let FB be the state transition function forN under B, and FB
∗ be the state transition function

for Hebb∗(N , A) under B. For notational convenience, let T be the set inside Clos on the right-hand

side, i.e.

T =B∪(Clos(A)∩ Reach(Clos(A)∩ Clos(B)))

This proof follows the major plot beats of the proof for Theorem [TODO]. First, since

ClosHebb∗(N ,A)(B) is a fixed point under B in Hebb∗(N , A), we have FB
∗(ClosHebb∗(N ,A)(B)) =

ClosHebb∗(N ,A)(B). But I will show that Clos(T) is also a fixed point under B in Hebb(N , A), i.e.

FB
∗(Clos(T))=Clos(T). Since we postulated that there is a unique fixed point under B in Hebb∗(N ,

A), it will follow that these two states must be the same: ClosHebb∗(N ,A)(B)= Clos(T).

Let's show that FB
∗(Clos(T)) = Clos(T). For the (←) direction, suppose n ∈ Clos(T). Since

Clos(T) is a fixed point under T in N , Clos(T) = FT(Clos(T)). By definition of F, we have two

cases:

Case 1. n∈ T, i.e. n∈B∪(Clos(A) ∩ Reach(Clos(A) ∩ Clos(B))). If n∈B, then we're done by

the definition of FB
∗ (the next state includes all nodes in B). Otherwise, we have n∈Clos(A)

and a path from some m ∈ Clos(A) ∩ Clos(B) to n in N . Since N is fully connected, m

is in fact a predecessor of n. Moreover, m ∈ Clos(T), since m ∈ Clos(A) ∩ Clos(B) and by

inclusion of Reach and Clos. So we have m∈preds(n), m,n∈Clos(A), and m∈Clos(T). But
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these are exactly the conditions of Lemma [todo]! This means we have

A(((((((((((( �
m∈preds(n)

WHebb∗(N ,A)(m,n) ⋅𝜒Clos(T)(m)))))))))))))=1

which implies that n∈FB
∗(Clos(T)).

Case 2. n is activated by its predecessors m in Clos(T) over N , i.e.

A(((((((((((( �
m∈preds(n)

WN(m,n) ⋅𝜒Clos(T)(m)))))))))))))=1

By the first part of Proposition [todo], each WN(m,n)≤WHebb∗(N ,S)(m,n). So the inner sum

using the former is ≤ the inner sum using the latter. Since A is nondecreasing, we have

A(((((((((((( �
m∈preds(n)

WHebb∗(N ,A)(m,n) ⋅𝜒Clos(T)(m)))))))))))))=1

But this immediately implies that n∈FB
∗(Clos(T)).

As for the (→) direction, suppose n∈FB
∗(Clos(T)). By definition of F∗, we have two cases:

Case 1. n∈ B. So n ∈B∪ (Clos(A)∩ Reach(Clos(A)∩ Clos(B))) =T. By inclusion of Clos, we

have n∈ Clos(T).

Case 2. n is activated by its predecessors m in Clos(T) over Hebb∗(N , A), i.e.

A(((((((((((( �
m∈preds(n)

WHebb∗(N ,A)(m,n) ⋅𝜒Clos(T)(m)))))))))))))=1

Suppose for contradiction that n∈ Clos(T). By the second part of Proposition [todo], each

WHebb∗(N ,A)(m,n)=WN(m,n), and so we have

A(((((((((((( �
m∈preds(n)

WN(m,n) ⋅𝜒Clos(T)(m)))))))))))))=1

but this implies that n∈FT(Clos(T))= Clos(T), which contradicts n∈ Clos(T). So we must

have n∈ Clos(T). □

Corollary 3.5. If Clos(A)∩ Clos(B)=∅, then ClosHebb∗(N ,A)(B)= Clos(B).

Proof. Suppose Clos(A)∩ Clos(B)=∅. We have

ClosHebb∗(N ,A)(B) = Clos(B∪(Clos(A)∩ Reach(Clos(A)∩ Clos(B))))
= Clos(B∪(Clos(A)∩ Reach(∅)))
= Clos(B∪∅)
= Clos(B)



□

4 Neural Network Semantics for Hebbian Update

[TODO] Give official languages LHebb and LHebb∗ for the logics of Hebb and Hebb∗, i.e. using

operators [P]Hebb𝜑 and [P]Hebb∗𝜑 and their semantics!!! And also just say that the definitions

N ⊧Hebb𝜑 (same for Hebb∗), Γ⊧Hebb𝜑 (same for Hebb∗) are what you'd expect.

5 A Complete Logic of Iterated Hebbian Update

• In the previous section, I gave sound axioms for Hebb∗. It turns out those axioms are nearly

complete! I'll show this here, and give the complete set of “reduction axioms”

• I already proved soundness, but I have to do it again for these new axioms!

Definition 5.1. [Reduction axioms for Hebb∗]

Theorem 5.2. () These reduction axioms are sound; for all Γ ⊆L∗ and 𝜑 ∈L∗, if Γ ⊢ 𝜑 then

Γ⊧𝜑.

Proof. [todo] □

Proof. [todo] □

5.1 Example: Verifying a Neural Networks Behavior After Learning

do example using single-step Hebbian learning, since iterated is a bit more abstract. . .

Definition 5.3. [Term rewriting translation system]

Proposition 5.4. () Each tr(𝜑) is update-operator free [todo, fix this statement!]

Proof. [todo] □

Proposition 5.5. () Each tr(𝜑) actually terminates [todo, fix this statement!]
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Proof. [todo] □

Proposition 5.6. () ⊢𝜑↔tr(𝜑) [todo, fix this statement, which ⊢ is this?]

Proof. [todo] □

Theorem 5.7. ( Model Building for L∗) For all consistent Γ ⊆L∗, there is finite N such that

N ⊧Γ.

Proof. [todo] □

Theorem 5.8. ( Completeness for L∗) For all consistent Γ⊆L∗ and all formulas 𝜑∈L∗,

if Γ⊧𝜑 then Γ⊢𝜑

Theorem 5.9. () For all Γ∗ ⊆L∗, there is N such that N ⊧Γ∗.

Proof. Let Γ∗ ⊆L∗. As outlined in the paper, our plan is to define rewrite rules based on our

reduction axioms that “translate away” all of the dynamic formulas //𝜑//Hebb𝜓 in Γ∗, resulting in

Γtr ⊆L. By our assumption, we have a net N ⊧Γ tr, and we show that this very same net N ⊧Γ∗.

It's easy to see intuitively how this translation should go. For example, given the formula

//p//Hebb( //p//Hebb //B//∧ □)∈Γ∗

we would recursively apply our reduction axioms, pushing //p//Hebb further into the expression until

we can eliminate the propositional cases //p//Hebbq.

We define the term-rewriting system that does the translation 𝜏(𝜑) for all 𝜑 as follows.

• 𝜏(p)= p

• 𝜏(¬𝜑)=¬𝜏(𝜑)

• 𝜏(𝜑∧𝜓)=𝜏(𝜑)∧𝜏(𝜓)

• 𝜏(K𝜑)=box(𝜏(𝜑))

• t r( //𝜑//Hebbp)= t r(p)

• t r( //𝜑//Hebb¬𝜓)= t r(¬ //𝜑//Hebb𝜓)

• t r( //𝜑//Hebb(𝜓∧𝜌))= t r ( //𝜑//Hebb𝜓∧ //𝜑//Hebb𝜌)

• t r( //𝜑//Hebb □)= t r( □)



• t r( //𝜑//Hebb //B//)= t r( //B//)

• t r( //𝜑//Hebb //𝜓//Hebb𝜌)= t r( //𝜑//Hebb(t r( //𝜓//Hebb𝜌)))

Formally, the term-rewriting system takes a formula 𝜑 and recursively applies these equational

rules to 𝜑 (from left-to-right). We just need to check that

1. For all 𝜓, t r(𝜓) is update-operator-free

2. This term rewriting actually terminates

The work involved in showing termination is long and tedious. The usual approach is to define a

measure on formulas c(𝜑) that decreases with each application of our reduction axioms (from left-

to-right). In particular, we need c to satisfy

• If 𝜓 is a subexpression of 𝜑, c(𝜑)>c(𝜓)

• c( //𝜑//Hebbp)>c(p)

• c( //𝜑//Hebb¬𝜓)>c(¬ //𝜑//Hebb𝜓)

• c( //𝜑//Hebb(𝜓∧𝜌))>c ( //𝜑//Hebb𝜓∧ //𝜑//Hebb𝜌)

• c( //𝜑//Hebb □)>c( □)

• c( //𝜑//Hebb //B//)>c( //B//)

• c( //𝜑//Hebb //𝜓//Hebb𝜌)>c( //𝜑//Hebb(t r( //𝜓//Hebb𝜌)))

But coming up with a measure c that works is tricky, and is dependent on the specific reduction

axioms. For the gritty details involved in coming up with this measure, as well as proving termi-

nation for the term rewriting system, see [12].

From here, we assume we have this measure c. We now have two things left to show:

Proposition. () For all 𝜑∈Γ∗, we have ⊢𝜑↔𝜏(𝜑)

Proof. By induction on c(𝜑).

Base Step. If 𝜑 is a proposition p, then we (trivially) have ⊢p↔ p.

Inductive Step. We consider each possible inductive case, and suppose the claim holds for

formulas 𝜓 with smaller c(𝜓). The ¬𝜑, 𝜑∧𝜓, K, and B cases all follow from applying the

translation, and then applying inductive hypothesis on the subexpression that results from

this.
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Here are the rest of the cases. Notice that we apply the inductive hypothesis to terms

whose c-cost is smaller (this is why we needed the decreasing properties of c before).

//φ //Hebbp case. We have

t r( //𝜑//Hebbp)= t r(p)= p

and so we need to show that

⊢ //𝜑//Hebbp↔ p

but this holds by our propositional reduction axiom.

//φ //Hebb¬ψ case. We have:

⊢ //𝜑//Hebb¬𝜓
↔¬ //𝜑//Hebb𝜓 (by the reduction axiom)
↔ t r(¬ //𝜑//Hebb𝜓) (inductive hypothesis)
= t r( //𝜑//Hebb¬𝜓) (by our translation)

//φ //Hebbψ )ρ case.. We have:

⊢ //𝜑//Hebb(𝜓∧𝜌)
↔ //𝜑//Hebb𝜓∧ //𝜑//Hebb𝜌 (by the reduction axiom)
↔ t r ( //𝜑//Hebb𝜓∧ //𝜑//Hebb𝜌) (inductive hypothesis)
= t r( //𝜑//Hebb(𝜓∧𝜌)) (by our translation)

//φ //HebbK case.. We have:

⊢ //𝜑//HebbK
↔K (by the reduction axiom)
↔ t r(K) (inductive hypothesis)
= t r( //𝜑//HebbK) (by our translation)

//φ //HebbB case.. We have:
⊢ //𝜑//HebbB

↔ //B//
(by the reduction axiom)

↔ t r( //B//)
(inductive hypothesis)

= t r( //𝜑//HebbB)
(by our translation)

//φ //Hebb //ψ //Hebbρ case.. This case is more interesting. First, notice our translation for

this case:

t r( //𝜑//Hebb //𝜓//Hebb𝜌)= t r ( //𝜑//Hebbt r( //𝜓//Hebb𝜌))



That is, we translate the inner expression first, then translate the outer expression.

This inner t r( //𝜓//Hebb𝜌) is equivalent to some update-operator-free formula 𝜒:

⊢𝜒↔ t r( //𝜓//Hebb𝜌)↔ //𝜓//Hebb𝜌 (5.1)

(This last equivalence follows from our inductive hypothesis, which we can apply

because //𝜓//Hebb𝜌 is a subexpression of //𝜑//Hebb //𝜓//Hebb𝜌.)

What about t r( //𝜑//Hebb𝜒)? Well, since 𝜒 is update-operator-free, this reduces

to our previous inductive cases. So we have

⊢ t r( //𝜑//Hebb𝜒)↔ //𝜑//Hebb𝜒 (5.2)

Putting this all together, we have:

⊢ //𝜑//Hebb //𝜓//Hebb𝜌
↔ //𝜑//Hebb𝜒 (by (5.1))
↔ t r( //𝜑//Hebb𝜒) (by (5.2))
↔ t r( //𝜑//Hebb(t r( //𝜓//Hebb𝜌))) (by (5.1))
↔ t r( //𝜑//Hebb //𝜓//Hebb𝜌) (by our translation)

□ □

Theorem 5.10. (Completeness) The logic of Hebbian Learning is completely axiomatized by the

base axioms [ref!], along with the above reduction axioms. That is, for all consistent Γ∗ ⊆L∗, if

Γ∗ ⊧𝜑 then Γ∗ ⊢𝜑.

Proof. Since our languageL∗ has negation, completeness follows from model building in the usual

way; this proof is entirely standard. Suppose contrapositively that Γ∗⊢𝜑. It follows that Γ∗ ⊢¬𝜑.

So Γ∗ ∪{¬𝜑} is consistent, and by Theorem [todo—need to modify the construction to make sure

the net is fully connected. Quote: “But remember that our nets are also fully connected! So we

need to modify the model construction from [38] by introducing a zero weight edge between every

pair of previously unconnected nodes. Note that this change does not affect the $\Prop$-structure

of the net.”], we haveN ∈Net such that N ⊧Γ∗∪{¬𝜑}. But thenN ⊧Γ∗ yet N ⊧𝜑, which is what

we wanted to show. □

5.2 Example: Building a Neural Network with Learning Constraints
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6 Reflections on Neural Network Alignment

[Prove soundness of axioms for both single-step and iterated Hebbian update!]



Chapter 6

Neural Network Semantics for First-Order Logic

1 Introduction

2 Lifting a Modal Logic to First-Order Logic

• A relatively new technique in modal logic allows us to “lift” the modal semantics to first-

order logic. In this section, I describe this technique, and explain how it is used to give

semantics for classical first-order logic.

• Explain where this technique comes from: A way to explain how first-order logic can be

derived as a special kind of modal logic. This is widely known within certain logic circles,

but is not widely known among those who use logics in AI. I am using it in a totally non-

controversial way: I follow it as instructions for how to get a predicate logic from a modal

one.

• Basic idea: Possible worlds are variable assignments

• This is done in two stages: Stage 1 is to treat each quantifier per variable ∀x like a dynamic

modal operator [x]. Stage 2 is to consider substitution [y/x] like a 2-variable dynamic

modal operator as well.

• This is first-order logic without equality. We can optionally introduce equality as a predi-

cate =(x, y) [I don't know the consequences of that choice...].

• In Section 3, I will follow Stage 1 and interpret ∃x as the closure of a signal in a neural

network (following closely to the modal logic interpretation). In Section 4, I will consider

classical substitution and explore how it interacts with the neural network closure variant
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FOL Axiom: Frame Property: FOL Axiom: Frame Property:

Figure 2.1.

of ∃x. (I need to define free variables and “y is free for x in 𝜑”)

• Here I can make a table of first-order logic axioms and the frame properties they correspond

to. Figure 2.1.

3 Neural Network Semantics for First-Order Logic

3.1 Variable-Assignment Networks

• I should first say that instead of an underlying set of propositions, there is an underlying set

of predicates p(x1, . . . , xk)

Definition 3.1. A variable-assignment network is N = //N, {Ex}x∈VAR, {Wx}x∈VAR, {Ax}x∈VAR, V//,

where

• N [type it correctly] is a finite nonempty set of variable assignments, which we treat as

nodes of the network. I will use lowercase greek symbols 𝛼,𝛽, . . . to denote these special

variable assignment neurons, in order to distinguish them from ordinary neurons n,m, . . .

• The edges, weights, and activation function are defined exactly as before, but now I define

one for each variable: Ex, Wx, Ax for x∈VAR.

• V : [] →P(N) is a valuation that maps each atomic predicate p(x1, . . . , xk) to the set of

variable assignments that make p true (equivalently, the set of variable assignments that are

active in state p).

[define Statex for variable-assignment models (N subscript will be hidden)]

Think of a variable-assignment network like an ensemble of neural networks Nx = //N,Ex,Wx,

Ax,V//for each variable x. Each of these netsNx in the ensemble specifies a particular accessibility



structure for assignments 𝛼 ∈ N under variable x. Unlike classical assignment models however,

this accessibility structure is determined by a neural network transition function Fx,S0 from state

S ∈ Statex to the next state (for a particular variable x). This function Fx,S0 is defined exactly as

before; the only difference is that there is now one per x∈VAR.

Fx,S0(S)=S0 ∪{{{{{{{{{{{{{{{{{{{{{{{{𝜂 ∣ Ax(((((((((((( �
m∈predsx(n)

Wx(m,n) ⋅𝜒S(m)))))))))))))=1}}}}}}}}}}}}}}}}}}}}}}}}
where 𝜒S(m)=1 iff m∈S is the indicator function.

The closure for each x∈VAR is defined similarly. I postulate that for all states S0, Fx,S0 applied

repeatedly to S0 has a unique fixed point under S0 (it is the only state S such that Fx,S0(S)=S). Let

Closx:Statex →Statex be the function that produces that least fixed point, for network Nx. [define

class of VANs]

3.2 Semantics for Quantifiers and Predicates

Definition 3.2. Formulas in the [extended first-order language] are given by

𝜑,𝜓≔ p(x1, . . . , xk) ∣ ¬𝜑 ∣ 𝜑∧𝜓 ∣ U𝜑 ∣ ∀x𝜑 ∣ ∀x𝜑

⊤,⊥,∨,→,↔ and the dual quantifiers ∃x,∃x are defined in the usual way.

∀x𝜑 is intended to be the minimal universal quantifier, which says “𝜑 is true in all variable

assignments that are accessible from the current one.” The special operator ∀x𝜑 is intended to be

the universal quantifier we get by interpreting ∃x𝜑 as the closure of signal 𝜑 in the neural network

Nx.

Definition 3.3. For all N ∈Net, and variable assignments 𝛼∈ N:

N ,𝛼⊧ p(x1, . . . , xk) iff 𝛼∈V(p(x1, . . . , xk))
N ,𝛼⊧¬𝜑 iff N ,𝛼⊧𝜑
N ,𝛼⊧𝜑∧𝜓 iff N ,𝛼⊧𝜑 and N ,𝛼⊧𝜓
N ,𝛼⊧U𝜑 iff [todo]
N ,𝛼⊧∃x𝜑 iff there is an Ex-path from ⟦𝜑⟧ to 𝛼
N ,𝛼⊧∃x𝜑 iff 𝛼∈ Closx(⟦𝜑⟧)
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where ⟦𝜑⟧={𝛼∈ N ∣N ,𝛼⊧𝜑}.

Proposition 3.4. By the definition of the duals ∃x,∃x, we can instead define the semantics for ∀x,

∀x as follows. For all N ∈[], 𝛼∈ N:

N ,𝛼⊧∀x𝜑 iff there is no Ex-path from ⟦𝜑⟧∁ to 𝛼
N ,𝛼⊧∀x𝜑 iff 𝛼∈(Clos(⟦𝜑⟧∁))∁

3.3 Semantics for Variable Substitution

The story up to here is incomplete; variable substitution is at the heart of FOL, and I have not

yet said anything about substitution in variable-assignment networks. Following [cite van Ben-

them] closely, I consider a substitution relation ↝x,y. The intended meaning of 𝛼↝x,y𝛽 is “𝛽 is the

result of assigning x≔ y in 𝛼.” Formally,

𝛼↝x,y𝛽 iff 𝛽(x)=𝛼(y) and 𝛼(z)=𝛽(z) for all z≠ x

For convenience, I assume that ↝x,y is functional, i.e. for each 𝛼 ∈ N there is exactly one 𝛽 ∈ N

with 𝛼↝x,y𝛽.

Van Benthem also considers a generalized notion of substitution, where ↝x,y is just an abstract

relation on assignments. For my purposes I will opt for the concrete definition, since substitution

is a syntactic notion and we don't gain much by interpreting it in a neural network structure.

From here, I will extend the language [] to [], which has substitution operators [y/x] for x,

y∈VAR. Formulas are given by

𝜑,𝜓≔ p(x1, . . . , xk) ∣ ¬𝜑 ∣ 𝜑∧𝜓 ∣ U𝜑 ∣ ∀x𝜑 ∣ ∀x𝜑 ∣ [y/x]𝜑

The semantics for [y/x] is given by

N ,𝛼⊧[y/x]𝜑 iff for that unique 𝛽 such that 𝛼↝x,y𝛽, we haveN ,𝛽⊧𝜑

4 Axioms, Soundness, and Frame Conditions



4.1 Axioms for Quantifiers and Predicates

• In this section, I will explore which first-order logic axioms are sound for ∀x interpreted in

a variable-assignment neural network.

• Sound ones: (Dual), (Rep), (CM), (Refl), and (Trans) get inherited by the underlying

modal logic, and are sound for the same reasons. (e.g., (CM) holds because each Closx

is cumulative.)

• Are there any sound variable interactions (for two variables x,y)? All the ones listed appear

to not necessarily be sound, but is there something we can say that's true?

• The unsound ones. For each of them, I should (1) prove that it isn't sound with a coun-

terexample, and (2) think about what property of Closx would make it true? (Think of each

of these axioms as somewhat negotiable; it's perfectly fine for neural networks to model

dependent quantifiers ∀x rather than the classical independent quantifiers.)

(Nec).

(Distr).

(Eucl).

(???).

(Exch). [Give the neural network that is a countermodel here] [Also, talk about what

this means—neural networks are capable of modeling dependent quantifiers!]

Proposition 4.1. The exchange axiom (Exch) is sound if and only if for all nets

N ∈[], 𝜑∈[] and x, y∈VAR, Closx(Closy(⟦𝜑⟧))= Closy(Closx(⟦𝜓⟧)).

Proof. [todo] □

(PR).

(Confl).
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Semantics for First-Order Logic
Neural Generalized Classical

(Dual) ∃x𝜑↔¬∀x¬𝜑   

(Nec) If ⊢𝜑 then ⊢∀x𝜑   

(CM) U(∀x𝜑→𝜓)→(∀x(𝜑∧𝜓)→∀x𝜑)   

(Distr) ∀x(𝜑→𝜓)→(∀x𝜑→∀x𝜓)   

(Refl) ∀x𝜑→𝜑   

(Trans) ∀x𝜑↔∀x∀x𝜑   

(Eucl) ∃x𝜑→∀x∃x𝜑   

(???) 𝜑→∀x𝜑 for x not free in 𝜑   

(Exch) ∀x∀y𝜑↔∀y∀x𝜑   

(Confl) ∃x∀y𝜑→∀y∃x𝜑   

Figure 4.1. Soundness for various FOL axioms, under three different semantics: neural semantics using

variable-assignment networks [], the generalized semantics [], and classical semantics for FOL []. For the

generalized and classical semantics, ∀x and ∃x should be interpreted as the usual ∀x and ∃x.  indicates that

the axiom is sound, i.e., holds for all models in that class without introducing any new frame properties. 

indicates that the axiom does not hold for all models in that class, and may require additional frame properties

to make it hold.

Abbreviations: (CM) is Cautious Monotonicity (from conditional logic); (Eucl) is Euclidean;

(Exch) is the standard FOL exchange principle; (Confl) is Confluence.

4.2 Axioms for Variable Substitution

Let's now consider soundness for this extended language with [y/x]. Since the operator [y/x]

is defined classically, it satisfies all the usual FOL substitution axioms over predicates, ∧, and ¬:

• [y/x]p(x)↔ p(y), and [y/x]p(z)↔ p(z) for z≠ x.

• [y/x](𝜑∧𝜓)↔([y/x]𝜑∧[y/x]𝜓)

• [y/x]¬𝜑↔¬[y/x]𝜑 (since substitution is functional)

[It satisfies the usual interaction axioms with the classical/minimal quantifier ∀x so long as I add

in the right frame conditions, which I should do above.]

I will now explore the different possible interactions between classical substitution [y/x] and



neural quantifiers ∀x, i.e., interactions between the substitution relation ↝x,y and Closx. In con-

trast to the axioms with quantifiers alone, I consider the [y/x] interactions to be relatively non-

negotiable; in order to interpret a neural network as a FOL reasoner, it's important for the net's

activation function Closx to get along with substitution (the core mechanic of FOL). Here is a list

of the standard interactions for classical FOL (these versions with the [y/x] operator come from

[cite van Benthem], who drew the standard axioms from [cite Enderton]):

1. [y/x]∀x𝜑↔∀x𝜑

2. [y/x]∀z𝜑↔∀z[y/x]𝜑 for z≠ x

3. ∀x𝜑→[y/x]𝜑, if y free for x in 𝜑

[The second axiom includes the case [y/x]∀y𝜑↔∀y[y/x]𝜑. I'm not listing existential interactions

such as [y/x]∃x𝜑↔∃x𝜑, [y/x]∃y𝜑↔∃y[y/x]𝜑, and [y/x]∃z𝜑↔∃z[y/x]𝜑 for z≠ x, y, since for

functional [y/x] they are each equivalent to their duals.]

[I'm also only interested in the (→) direction of (1) and (2) above, ]

Note that these are all sound in classical FOL, and in generalized FOL they are each only sound

alongside frame conditions. For variable-assignment network semantics, it's not necessary for Closx

to interact with ↝x,y at all—by default, none of these interaction axioms are sound. But we can

now ask: what neural network frame conditions are sufficient to make these axioms hold? In other

words, what class of variable-assignment nets N interact in the expected way with substitution?

Consider the following three properties of variable-assignment netsN . The first, thatN respects

substitutions, says that if 𝛽 is the result of assigning x ≔ y in 𝛼, and 𝛼 is activated by signal ⟦𝜑⟧,

then 𝛽 is activated as well.

Definition 4.2. A variable-assignment net N ∈ [] respects substitutions iff for all 𝛼, 𝛽 ∈ N, x,

y∈VAR, 𝜑∈[], if 𝛼↝x,y𝛽 and 𝛼∈ Closx(⟦𝜑⟧), then 𝛽∈ Closx(⟦𝜑⟧).

Example 4.3. [Give an example of a neural network that respects substitutions (but does not nec-

essarily reflect them)]

The second property,N reflects substitutions, says that if 𝛽 is the result of assigning x≔y in 𝛼,

and substituting y for x in 𝜑 does not result in any binding issues, if 𝛽 is activated by signal ⟦𝜑⟧,
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then 𝛼 is activated as well.

Definition 4.4. A variable-assignment net N ∈ [] reflects substitutions iff for all 𝛼, 𝛽 ∈ N, x, y ∈

VAR, 𝜑∈[], if 𝛼↝x,y𝛽, 𝛽∈ Closx(⟦𝜑⟧), and and y is free for x in 𝜑, we have 𝛼∈ Closx(⟦𝜑⟧).

Example 4.5. [Give an example of a neural network that reflects substitutions (but does not nec-

essarily respect them)]

A neural network both respects and reflects substitutions iff whenever 𝛼↝x,y𝛽, 𝛼 and 𝛽 are

activated by exactly the same signals ⟦𝜑⟧ (provided y is free for x in 𝜑).

Definition 4.6. [A third condition for the other axiom]

Example 4.7. [Give an example of a neural network with this third condition, but not the others]

The main result of this section is that these three properties are sufficient for the neural network

interpreted ∀x to interact normally with [y/x]. [Answer: what kinds of neural network ensembles

are these ones like?]

Example 4.8. [Give an example of a neural network with all three!]

I will now prove that these three properties are sufficient:

Proposition 4.9. Suppose a variable-assignment netN respects substitutions. Then the (→) direc-

tion of the axiom [y/x]∀x𝜑↔∀x𝜑 is sound.

Proof. Let N ∈ [] and let 𝛼 ∈ N be any assignment. Let 𝛽 be that unique assignment such that

𝛼↝x,y𝛽. Suppose N , 𝛼 ⊧ [y/x]∀x𝜑. By the semantics for substitution, N , 𝛽 ⊧ ∀x𝜑, and then by

the semantics for ∀x we have 𝛽∈Closx(⟦𝜑⟧∁). SinceN respects substitutions, 𝛼∈Closx(⟦𝜑⟧∁). But

this means N ,𝛼⊧∀x𝜑, and we are done. □

Proposition 4.10. Suppose a variable-assignment net N reflects substitutions. Then the axiom

“∀x𝜑→[y/x]𝜑, if y free for x in 𝜑” is sound.

Proof. Let N ∈ [] and let 𝛼 ∈ N be any assignment. Let 𝛽 be that unique assignment such that

𝛼↝x,y𝛽. Suppose N , 𝛼⊧ ∀x𝜑, and suppose y is free for x in 𝜑. By the semantics for ∀x we have



𝛼∈ Closx(⟦𝜑⟧∁)= Closx(⟦¬𝜑⟧).

Now, suppose for contradiction that N , 𝛼 ⊧ [y/x]𝜑, i.e., 𝛽∈ ⟦𝜑⟧∁. By Inclusion of Closx, 𝛽∈

Closx(⟦𝜑⟧∁) = Closx(⟦¬𝜑⟧). Since y is free for x in 𝜑, y is free for x in ¬𝜑. So we can apply the

fact that N reflects substitutions, which gives us 𝛼∈ Closx(⟦𝜑⟧∁). But this directly contradicts our

hypothesis. So we must conclude that N ,𝛼⊧[y/x]𝜑. □

Corollary 4.11. Suppose a variable-assignment net N respects substitutions. Then the (←) direc-

tion of the axiom [y/x]∀x𝜑↔∀x𝜑 is sound.

Proof. If N respects substitutions, then “∀x𝜑→[y/x]𝜑, if y free for x in 𝜑” is sound. I will show

that the formula ∀x𝜑→[y/x]∀x𝜑 follows. Let 𝛼∈ N and suppose N ,𝛼⊧ ∀x𝜑. By the soundness

of (Trans), N , 𝛼 ⊧ ∀x∀x𝜑. Now, notice that y is free for x in the expression ∀x𝜑 (since x is not

free at all, it is safe to substitute y for x). So by hypothesis,N ,𝛼⊧[y/x]∀x𝜑, which was the goal. □

Proposition 4.12. Suppose a variable-assignment netN is [todo]. Then the following substitution

interaction axioms are sound:

• [todo]

Proof. [todo] □

5 Reflections on First-Order Reasoning using Neural Networks

5.1 How to Interpret Variable-Assignment Networks

• Part of my conclusion is this: In order for a variable-assignment net to behave like full FOL

reasoner, it must have [list of properties]

• In addition to whatever else I do here, I should probably sanity check and make sure that

there is actually a variable-assignment net that satisfies all of the properties necessary to

make it act like a full FOL reasoner. (If there isn't one that has all the properties, then one

of the properties is saying too much / together they are trivial.)
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5.2 Are variable-assignment networks cognitively plausible?

Working list of papers that might bear on this question:

• Corey, Neural basis for generalized quantifier comprehension, 2005

• Kiela, Variable Binding in Biologically Plausible Neural Networks, 2011

The questions here are (1) whether there really are distinct types of edges in neural networks, and

(2) whether neurons can be thought of as carrying variable-assignment information.

5.3 Related Work: Other Neuro-Symbolic Systems for First-Order Reasoning

Working list of neuro-symbolic systems that interpret quantifiers or variable substitution in any

formal way:

• Logic Tensor Networks (over “real logic”)—see Badreddine, Logic Tensor Networks, 2022

• Logical Neural Networks—see Riegel, Gray, Logical neural networks, 2020

• Kiela, Variable Binding in Biologically Plausible Neural Networks, 2011

• What about DeepProbLog?



Chapter 7

Conclusions

In the Introduction, I said that this dissertation serves to promote the point of view that neural

networks can be thought of as models for formal logic. Let's now take a step back and see how

far this perpective has taken us.

[I like the way Levin Hornischer wrote his: A summary, followed by a list of results, followed

by a list of open questions]

I could also give a fun sampler of some future applications of neural network semantics. [For

these 4 directions, I already have some basic ideas for how to proceed. So I will finish out by

outlining what I think the next steps are. I don't necessarily have to prove anything difficult, but I

think it's important to show that I've been thinking about these deeply, and I have a start for how

to proceed (and it's nice to be able to claim the ideas!)] [Maybe it's better in this section to pivot to

an “open questions” format and keep it brief. . .]

Neural Network Updates from Epistemic Ones. My original goal was to explore what “clas-

sical” updates correspond to neural network updates such as Hebb∗, and conversely what neural

updates correspond to plausibility updates such as Cond, Lex, and Consr. This theorem doesn't seem

to clarify that; it's constructive (we do in fact build the corresponding updates), but by translating

back and forth at the static level we don't define the update in the original updates “native environ-

ment.” [Elaborate/clarify this point]. For the remainder of this section, I will put in the extra work

to see what Hebb∗, Cond, Lex, and Consr “look like” on the other side.

Definition 0.1. [Define the plausibility update that simulates Hebb∗]

Definition 0.2. [Define the neural update that simulates Cond]

Definition 0.3. [Define the plausibility update that simulates Lex]

Definition 0.4. [Define the plausibility update that simulates Consr]
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The Learning Power of Hebbian Learning. [Differentiate between (single-step) update and (in

the limit) learning. Cite papers on learning power of different epistemic updates] [Go ahead and

give the mathematical setup needed to ask the question formally.] [An interesting question, but

broad: what can we say about neural network learning in the context of computational learning

theory?]

A Dynamic Logic of Backpropagation. [Of course I don't have any results about this (I'm focusing

on giving a complete story about the unsupervised upgrade), but in principle we can do the same

thing for gradient descent (implemented as backpropagation over a neural network). Formulas

[P;Q]𝜑 need to be used. I can go ahead and give what the semantics would look like over neural

network models. And it would be nice if I could give at least one sound property of backprop-

agation here!]

1 Open Questions

[First, list all the open questions! Then talk in detail about a few!]

1. Give a characterization of those (recurrent) nets whose closure Clos(S) reaches a unique

fixed point (i.e. does not oscillate)

2. Extend the semantics to account for recurrent neural networks whose Clos(S) does oscillate!

3. Extend the semantics for fuzzy (and possibly probabilistic) activation patterns Clos(S)

4. Give semantics and sound axioms for other neural network architectures that use new ideas,

e.g. transformers & attention mechanisms. (Brand new ideas are needed, this isn't just a

simple extension!)

5. It's an open problem to prove formal soundness results for neuro-symbolic systems like

LTNs and DeepProbLog? Do the techniques from this work shed light on how to do this,

or what axioms are needed?

6. Extend the semantics to give sound (and possibly complete) axioms for other neural net-

work updates, especially gradient descent implemented as backpropagation! Can we use



this to give a “classical” belief revision operator equivalent to backpropagation?

7. Extend the semantics to give sound (and possibly complete) neural network semantics for

first-order logic! Proving soundness & completeness for any neural network interpretation

of first-order logic is a huge open problem in neuro-symbolic AI.

8. Extend the semantics to stabilized Hebbian update, using Oja's rule

9. What concrete neural network learning policy corresponds to Lex? To Consr? What about

Rott's 21 different belief revision operators? What classical belief revision policies corre-

spond to Hebbian update? Oja's rule? Backpropagation?

10. Compare the learning power of neural network updates (Hebbian update, backprop) in the

limit against other kinds of updates, e.g. epistemic updates, or against each other.

11. It's clear that every unsupervised belief revision operator is a supervised one. But is every

supervised belief revision operator equivalent to an unsupervised one? Does this result

carry over to neural networks?

12. Characterize different belief revision operators & learning policies using frame correspon-

dences. Modal logic is really the perfect environment for asking this question in this way.
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Appendix A

A.1 Appendix for Section 3.

Theorem 4.1. blah blah

Proof. □

Proof Sketch. dfadsl;fjal;sdfj □

A.2 Appendix A2

A.3 Appendix A3
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