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1 Notes on inductive inference

Let us consider a game of inductive inference (after Osherson et al., 1986). It starts by
taking a class of sets L = {N − {n} | n ∈ N}, where N = N+ ∪ {0} is the set of all natural
numbers. So, the following will be examples of sets in L: {1, 2, 3, 4, 5, . . .}, {0, 2, 3, 4, 5, . . .},
{0, 1, 3, 4, 5, . . .}, etc. I will now choose one of those sets secretly and your task will be to
guess which one I have in mind. You will be guessing on the basis of elements of the set,
which I will reveal to you one by one. Read the numbers in the sequence below and each
time you read the new number guess one of the sets: 1, 3, 4, 2, 6, 7, 8, . . .. Let us stop at 8.
Try to answer the following questions:

1. Are you confident about your current guess? What would make you change your
guess?

2. What was your ‘guessing rule’?

3. What winning condition would make this game interesting? How about: ‘you win if
at least one of your guesses is correct’?

4. What winning condition would make this game interesting? How about: ‘you win if
you make exactly one guess and that guess will be correct’?

5. And how about: ‘you win if you succeed to make a right guess and never change your
mind after that’? How many wrong guesses could you make under this condition?

6. Assume that I’ll give you all and only truthful clues. What would be the guessing rule
to win according to the last winning condition?

7. Add to L the set {0, 1, 2, 3, 4, 5, . . .}. Is your guessing rule still good?

8. While keeping {0, 1, 2, 3, 4, 5, . . .} in, assume that I’ll give you all and only truthful
clues, and I’ll guarantee they are ordered increasingly. Can you win the game?

Formal Learning Theory (FLT) is a mathematical framework to capture such learning
effects. It goes back to the the 1960’s; to Putnam (1965), Gold (1967), and Solomonoff
(1964). This course is about a computational treatment of learning problems like the one
in our motivating example. Implicitly, it is also about the problem of induction and re-
lated issues in epistemology and philosophy of science. This framework helps addressing the
abstract problems of language learning and grammar inference, computable learning in ar-
tificial intelligence, but also issues in scientific inquiry and epistemology: fallible knowledge
and reliable learning.
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2 FLT: Frameworks Overview

The initial motivating game-example implicitly followed an underlying framework of learn-
ing. In FLT such framework is ofter referred to as learning paradigm, in which the following
elements are specified:

1. Possible realities.

2. Hypotheses.

3. Information accessible to the learner.

4. Learner.

5. Success criterion.

2.1 Language Learning

The initial game is an example of Language Learning, which is also known as Set Learning,
or Numerical Paradigm. Its specification is as follows:

1. Possible realities: sets of numbers.

2. Hypotheses: some names of sets.

3. Information accessible to the learner: sequences of numbers which are initial segments
of infinite streams of elements of one of the sets.

4. Learner: a function that takes a sequence and outputs a hypothesis.

5. Success criterion: after finite number of outputs the answers stabilize on a correct
answer.

Language learning is a subject of vast existing and on-going work of various levels of com-
putational generality. Prominent examples of excellent overviews include those by Osherson
et al. (1986); Martin and Osherson (1998); Zeugmann and Lange (1995); Lange et al. (2008).

2.2 Function Learning

Function learning is also known as Learning of Functional Languages, and can be captured
by the following specification.

1. Possible realities: functions.

2. Hypotheses: names of functions.

3. Information accessible to the learner: sequences of pairs (argument, value).

4. Learner: function that takes a sequence and outputs a hypothesis.

5. Success criterion: after finite number of outputs the answers stabilize on a correct
answer.

This setting has been applied, for example, to the philosophical problem of prediction,
simplicity, and reliable belief revision by (Kelly, 1996). An overview of mathematical and
computational results on the topic can be found in (Zeugmann and Zilles, 2008).
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An Example: Eleusis Eleusis in an inductive inference card game. I ask: ‘What is the
rule behind this sequence of cards?’. Imagine I’m revealing the following sequence one-by-one
and each time you see a new card you conjecture a rule:

A♠ Q♠ 3♠ A♠ Q♠ 4♡ . . .

First note that the problem of learning in Eleusis is of a different nature than that of
the first example. Here, the conjecture might depend on the exact place of a card in the
sequence, consider, e.g., the rule: ‘Aces in even places’. Hence, for the formal treatment of
the game the function learning paradigm would be more fitting.

Assume we have at our disposal unlimited amount of playing cards. How many different
abstract scenarios? Quite many. Let us try to estimate this multitude. How many different
playing cards do we have? How many different beginnings of infinite streams of length 1?
How many different beginnings of length 2? Finally, how many different infinite sequences?
Of course, infinitely many. Actually, uncountably many. To see why, assume, towards
contradiction, that there countably many such sequences. Then they can be listed in the
following way, each numbered a natural number.

1. A♠ A♠ A♠ A♠ A♠ A♠ . . .
2. A♣ A♣ A♣ A♣ A♣ A♣ . . .
3. A♡ A♡ A♡ A♡ A♡ A♡ . . .
4. A♢ Q♠ 3♠ 8♡ 2♡ 5♠ . . .
5. A♠ Q♠ 7♠ J♠ 5♠ 5♠ . . .

. . .
m. A♣ A♡ A♣ A♡ A♣ A♢ . . . m-th
. . .

. . .

We will show that there must be an infinite sequence of cards that is not in this enu-
meration, effectively proving that such infinite sequences cannot be numbered with N. We
will construct the new, missing sequence, by making its nth element different than the nth
element of nth sequence in the list. Note, that in the following enumeration some cards have
been colored blue, just replace the blue element with any different card.

If we take the Eleusis problem to be that of exact prediction of the sequence, thinking
of conjectures as exactly those infinite streams seems fitting. But then we will not be able
to learn, since we will not be able to use the list of all conjectures in our background book-
keeping. This shows the importance of the hypothesis space in learning problems. Assume
that in the game we require that the rule must be written in natural language on a piece
of paper; or expressed by a natural language sentence; or in the extreme case, should be
expressed in language but with a text no longer than 300 pages book. Finally, we could also
require that the rule is encoded by a TM program. In all of those cases the descriptions are
finite and there are countably many of them.

It must be that those rules cluster infinite streams in an adequate way. How many
sequences comply to the rule: ‘The sequence has solely A♠-cards.’ How about: ‘The se-
quence has solely ♠-cards’ and ‘The sequence has ♡-cards on even places’. Finally, note
that the rules might be specified by the following prescription: ‘The sequence is definable in
first-order logic’.

Consider the following hypothesis spaces. As our learning setting requires, in each case
one of the hypotheses is true, you are presented in a step-wise manner a stream consistent
with this hypothesis. Each time you see a new datum you can change your conjecture. How
much can you get to know and how quickly can you know it?

1. {(all cards are ♠), (all cards are ♢)}
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2. {(♠ at the 4-th position),¬(♠ at the 4-th position)}

3. {(exactly n cards are ♡) | n ∈ N}

4. {(exactly n cards are ♡) | n ∈ N} ∪ {(∞ cards are ♡)}

As you probably noticed, case 3. is the one that is properly identifiable in the limit. Case
4. leads to trouble similar to those that the introduction of N led to in the initial example.

In Eleusis the rules are always expressible linguistically. What will happen if we require
the hypotheses being expressible in first-order logic?

2.3 Model-theoretic Learning

Model-theoretic Learning (Martin and Osherson, 1997, 1998) is also known under the name of
First-Order Framework of Inquiry and it constitutes a step towards a more logical treatment
of the learning problem. In this it follows the line of thinking of the learning problem as a
higher type of decidability, i.e., decidability in the limit (see Gold, 1965). The specification
of the paradigm is given as follows:

1. Possible realities: models of a given signature.

2. Hypotheses: first order sentences.

3. Information accessible to the learner: sequences of atomic formulas and negations
thereof.

4. Learner: function that takes a sequence and outputs a hypothesis.

5. Success criterion: after finite number of outputs the answers stabilize on a correct
answer.

An Example: Learning about Orders Assume that our possible worlds are orders
on N, and that our language contains only the single binary predicate < (and =). We will
decide the following hypothesis space P = {P0, P1}, where P0 is a collection of strict total
orders with a least point, and P1 is a collection of strict total orders with a greatest point.
The elements are given temporary names, via some variable assignment. Now you are given
a sequence of clues concerning the order in question, for instance:

v3 ̸=v4, ¬v0<v0, v1<v9, v11=v11, v0 ̸=v3, . . .

The data consist of atomic propositions and their negations (e.g., of basic formulas).
Your task is to solve the problem, i.e., to decide, possibly in the limit, P (the example comes
forom Martin and Osherson, 1998).

2.4 Learning in Epistemic Spaces

Finally, the most recent setting for learning, gives a very general perspective on learning.
It gives the advantage of thinking of learning in terms of belief-revision and possible world
semantics.

1. Possible realities: possible worlds.

2. Hypotheses: sets of possible worlds.

3. Information accessible to the learner: sequences of propositions.
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4. Learner: function that takes a sequence and outputs a proposition.

5. Success criterion: after finite number of outputs the answers stabilize on a proposition
that is a singleton of the actual world.

For more details on this framework (see Gierasimczuk, 2010; Baltag et al., 2011, 2014b,
2019b; Gierasimczuk, 2023), the setting also leads to interesting general topological connec-
tion (Baltag et al., 2014a) and to a dynamic modal logic of learning theory (Baltag et al.,
2019a).

2.5 Additional Notes on Paradigm Specification

Note that hypotheses are systematic descriptions of possible realities, they captured by what
is sometimes called ‘naming systems’. The hypotheses are finite descriptions of sets, e.g.,
Turing machines, grammars, natural numbers, logical formulas.

It is quite important to remember that in the interesting cases the data available at a
given step presents only partial information about a possible reality. The character of data
is determined by the setting, e.g., in language learning one might consider only positive
or positive and negative information about a possible reality. In the basic settings data
presented to the learner is arbitrary (conforming to the reality chosen by ‘nature’ in the
beginning of the game), in some paradigms the learner can request particular information.

Identifiability in the limit is only one of many possible success criteria. Finite identifia-
bility (see Mukouchi, 1992; Lange and Zeugmann, 1992; Gierasimczuk and de Jongh, 2013)
requires that the learner in finite time arrives at complete certainty about the identity of the
real world. Another condition is gradual identifiability—here after some time the learner
starts giving answers which, according to some measure, keep getting closer and closer to the
correct answer. While it is important to know about and appreciate the other possibilities,
in this course we will focus on identifiability in the limit—we will require of the learner that
after a finite time her answers will stabilize on a correct answer.
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3 Epistemic Logic: validity arguments

Proposition 1. |= (Kiφ ∧Ki(φ→ ψ))→ Kiψ

Proof. We need to show that the above formula is valid, i.e., is true in every possible-world
model. In order to do that we take:

1. an arbitrary possible-worlds model M over n agents, M = (S,K1, . . . ,Kn, π),

2. an arbitrary i ∈ {1, . . . , n},

3. an arbitrary s ∈ S.

We need to show that M, s |= (Kiφ ∧Ki(φ→ ψ))→ Kiψ.

There are two cases, the antecedent formula Kiφ ∧Ki(φ → ψ) is either true or false in
model M at the state s.

First consider that it is false, i.e., M, s ̸|= (Kiφ ∧ Ki(φ → ψ)), in which case indeed
M, s |= (Kiφ ∧Ki(φ→ ψ))→ Kiψ (by the semantics of →).

Now consider that it is true, i.e., M, s |= (Kiφ ∧ Ki(φ → ψ)). Then M, s |= Kiφ and
M, s |= Ki(φ → ψ) (by the semantics of ∧). Then, for all t ∈ S, such that (s, t) ∈ Ki,
M, t |= φ and M, t |= φ → ψ (by the semantics of K). Therefore, for all t ∈ S, such that
(s, t) ∈ Ki, M, t |= ψ (by the semantics of →). So M, s |= Kiψ (by the semantics of K), and
hence that M, s |= (Kiφ ∧Ki(φ → ψ)) → Kiψ. Since M , i, and s were chosen arbitrarily,
we conclude that |= (Kiφ ∧Ki(φ→ ψ))→ Kiψ.

Proposition 2. For all models M , if M |= φ, then M |= Kiφ.

Proof. Let us take an arbitrary model M . To prove this proposition we need to only concern
ourselves with models M such that M |= φ (if M ̸|= φ the proposition is true, because it is
an implication). Assume then that M |= φ, and so for all s ∈ S, M, s |= φ. In particular,
for any fixed state s ∈ S, we get that M, t |= φ at all t ∈ S, such that (s, t) ∈ Ki. Hence
M, s |= Kiφ, and, since s was chosen arbitrarily, M |= Kiφ.

Proposition 3. |= Kiφ → φ in the class of S5 models (i.e., models with equivalence
accessibility relation).

Proof. As in the proof of Proposition 1, we take an arbitrary model M , agent i and a state s
in the model M . We assume that M, s |= Kiφ. Then M, t |= φ for all t, such that (s, t) ∈ Ki.
Then, by the fact that (s, s) ∈ Ki (since Ki is reflexive), we obtain M, s |= φ. Since M and
s were chosen arbitrarily, we conclude |= Kiφ→ φ.

Proposition 4. |= Kiφ → KiKiφ in the class of S5 models (i.e., models with equivalence
accessibility relation).

Proof. As before, we take an arbitrary M , i and s. Assume that M, s |= Kiφ. Consider
any t such that (s, t) ∈ Ki and any u such that (t, u) ∈ Ki. Since Ki is transitive, we have
(s, u) ∈ Ki. Since M, s |= Kiφ, we get M,u |= φ (by the semantics of K). Thus, for all t
such that (s, t) ∈ Ki, we have M, t |= Kiφ (by the semantics of K). Finally (again by the
semantics of K) we obtain M, s |= KiKiφ, and so we conclude |= Kiφ→ KiKiφ.

Proposition 5. |= ¬Kiφ→ Ki¬Kiφ in the class of S5 models (i.e., models with equivalence
accessibility relation).
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Proof. As before, we take an arbitrary M , i and s. Assume that M, s |= ¬Kiφ, then for some
u, M,u |= ¬φ. Take any t, such that (s, t) ∈ Ki. Since Ki is symmetric we have (t, s) ∈ Ki

and since it is also transitive we get that (t, u) ∈ Ki. Thus is follows that M, t |= ¬Kiφ (by
the semantics of K). Since this is true for all t, such that (s, t) ∈ Ki (again by the semantics
of K) we obtain M, s |= Ki¬Kiφ, and so we conclude |= ¬Kiφ→ Ki¬Kiφ.

4 Epistemic Logic: soundness and completeness

In this note we show that Kn is a sound and complete axiomatization with respect toMn for
the language Ln by first showing soundness (Theorem 4.1) and then completeness (Theorem
4.4).

4.1 Soundness of Kn wrt Mn for Ln

Theorem 4.1 (Soundness). Kn is a sound axiomatization with respect to Mn for Ln.

Proof. To show that Kn is a sound axiomatization with respect to Mn for Ln, we need to
demonstrate that:

for any formula φ ∈ Ln, if Kn ⊢ φ, then Mn |= φ.

Let φ ∈ Ln and Kn ⊢ φ. That means that there exists a proof of φ in Kn: a sequence of
formulas φ0, . . . , φk, with φk = φ, such that for all ℓ ∈ {0, . . . , k}, φℓ is either (a substitution
of) an axiom of Kn, or it is derived from previous steps of the proof by one of the rules of
inference of Kn. We need to show that then Mn |= φ. We will prove that by induction on
the length of the proof.

Base case: Let us assume that k = 0 (i.e., that the proof is of length 1), so φ = φ0. Then
it is only possible that φ is (a substitution of) an axiom of Kn. There are two cases:

1. φ is (a substitution of) a propositional tautology. In this case φ is true under any
propositional valuation, so it is true in all possible worlds of all possible-world models
in Mn, so φ is valid in Mn.

2. φ is (a substitution of) the axiom A2:

(Kiψ ∧Ki(ψ → γ))→ Kiγ, where i ∈ {1, . . . , n}.

We need to show that the above formula is valid wrt Mn, i.e., it is valid in every
possible-world model, i.e., it is true in every possible world of every possible-world
model. In order to do that we take an M ∈Mn, M = (S,K1, . . . ,Kn, π), an arbitrary
agent i ∈ {1, . . . , n}, and an arbitrary world s ∈ S.

There are two cases: the antecedent formula Kiψ ∧Ki(ψ → γ) is either true or false
in model M at the world s.

First consider that it is false, i.e., (M, s) ̸|= (Kiψ ∧Ki(ψ → γ)). In that case indeed
(M, s) |= (Kiψ ∧Ki(ψ → γ))→ Kiγ (by the semantics of →).

Now consider that it is true, i.e., (M, s) |= (Kiψ∧Ki(ψ → γ)). Then (M, s) |= Kiψ and
(M, s) |= Ki(ψ → γ) (by the semantics of ∧). Then, for all t ∈ S, such that (s, t) ∈ Ki,
(M, t) |= ψ and (M, t) |= ψ → γ (by the semantics of K). So, for all t ∈ S, such that
(s, t) ∈ Ki, (M, t) |= γ (by the semantics of →). That means that (M, s) |= Kiγ (by
the semantics of K), and hence that (M, s) |= (Kiψ ∧Ki(ψ → γ))→ Kiγ.
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Since M , i, and s were chosen arbitrarily, we conclude that

Mn |= (Kiψ ∧Ki(ψ → γ))→ Kiγ.

Induction step: Let us assume that k > 0, so φ = φk, in a proof φ0, . . . , φk (of length
k + 1).

Induction hypothesis: Assume that for all ℓ < k, Mn |= φℓ.

We have to show that then φ (= φk) is valid in Mn. The arguments for the two cases
where φ is (a substitution of) a propositional tautology or axiom A2 are identical to the
ones in the base case. The two remaining cases are where φ was obtained by an application
of one of the rules of Kn to the previous steps of the proof:

1. φ was obtained by applying R1 to some previous steps in the proof. That means that
there is a γ ∈ Ln and i, j < k, such that i ̸= j, φi = γ and φj = γ → φ. By the
induction hypothesis, we know that then γ and γ → φ are valid in Mn, i.e., true in
all worlds in all possible-world models in Mn. Then in all those worlds, also φ must
be true, by the semantics of → in propositional logic. So,Mn |= φ.

2. φ was obtained by applying R2 to some previous step in the proof. That means that
there is a γ ∈ Ln and j < k, φj = γ and φ = Kiγ, for some i ∈ {1, . . . , n}. By the
induction hypothesis we know that then γ is valid in Mn, i.e., true in all worlds in
all possible-world models in Mn. Let us take an arbitrary model M ∈ Mn such that
M |= γ, i.e., for all s ∈ S, (M, s) |= γ. In particular, for any fixed world s ∈ S, we get
that (M, t) |= γ at all t ∈ S, such that (s, t) ∈ Ki. Hence (M, s) |= Kiγ, and, since s
was chosen arbitrarily, M |= Kiγ. Because M was an arbitrary model in Mn, we get
that Mn |= φ.

Thus, we have shown that for any formula φ ∈ Ln, if Kn ⊢ φ, then Mn |= φ.

4.2 Completeness of Kn wrt Mn for Ln

In order to show completeness we need to introduce several concepts and prove a lemma.

Definition 4.1. Take an axiom system AX,

1. φ is AX-consistent if ¬φ is not provable in AX.

2. A finite set {φ1, . . . , φk} of formulas is AX-consistent if φ1∧. . .∧φk is AX-consistent.

3. An infinite set of formulas is AX-consistent if all of its finite subsets are AX-consistent.

Definition 4.2. A set F of formulas is a maximal AX-consistent set wrt a language L if:

1. it is AX-consistent, and

2. for all φ in L but not in F , the set F ∪ {φ} is not AX-consistent.

Lemma 4.2 (Lindenbaum). Suppose the language L consists of a countable set of formulas
and is closed wrt propositional connectives (so that if φ and ψ are in L, then so are φ ∧ ψ
and ¬φ).

In any axiom system AX that includes every instance of A1 and R1 for the language L,
every AX-consistent set F ⊆ L can be extended to a maximal AX-consistent set wrt L.
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Proof. Let F be an AX-consistent subset of formulas in L. We will construct a sequence of
AX-consistent sets:

F0, F1, F2, . . .

L is a countable language, we can enumerate its formulas:

ψ1, ψ2, . . .

We define:

F0 := F

Fi+1 :=

{
Fi ∪ {ψi} if this set is AX-consistent
Fi otherwise

Each set in the sequence F0, F1, . . . is AX-consistent. Fi is a nondecreasing sequence of sets.
We define F in the following way:

F :=

∞⋃
i=0

Fi.

Note that each finite subset of F must be contained in Fj for some j, and thus must be
AX-consistent (since Fj is AX-consistent). It follows that F itself is AX-consistent.

We claim that in fact F is a maximal AX-consistent set. To show this take any ψ ∈ L
and ψ /∈ F . Since ψ is a formula in L, it must appear in our enumeration, say, as ψk. If
Fk ∪ {ψk} were AX-consistent, then our construction would guarantee that ψk ∈ Fk+1, and
hence that ψk ∈ F . Because ψk = ψ /∈ F , it follows that Fk ∪ {ψ} is not AX-consistent.
Hence F ∪ {ψ} is also not AX-consistent.

It follows that F is a maximal AX-consistent set.

Lemma 4.3. If F is a maximal AX-consistent set, then it satisfies the following properties:

1. for every formula φ ∈ L, exactly one of φ and ¬φ is in F ;

2. φ ∧ ψ ∈ F iff φ ∈ F and ψ ∈ F ;

3. if φ and φ→ ψ are both in F , then ψ is in F ;

4. if φ is provable in AX, then φ ∈ F .

Proof. (of 1.)

Let F be a maximal AX-consistent set, and let φ ∈ L. We show that one of F ∪ {φ}
and F ∪ {¬φ} is AX-consistent. For assume to the contrary that neither of them is AX-
consistent. It is not hard to see that F ∪ {φ ∨ ¬φ} is then also not AX-consistent. So F is
not AX-consistent, because φ∨¬φ is a propositional tautology. This gives a contradiction.

If F ∪ {φ} is AX-consistent, then we must have φ ∈ F since F is a maximal AX-
consistent set. Similarly, if F ∪ {¬φ} is AX-consistent then ¬φ ∈ F . Thus, one of φ or ¬φ
is in F .

Moreover, we cannot have both φ and ¬φ in F , for otherwise F would not be AX-
consistent.

Theorem 4.4. Kn is a complete axiomatization with respect to Mn for Ln.

Proof. We want to show that:
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for every formula φ ∈ Ln, if Mn |= φ, then Kn ⊢ φ.

It suffices to show that:

every Kn-consistent formula in Ln is satisfiable with respect to Mn, (*)

because if we knew that (*) is true we would get the theorem in the following way. Assume
that Mn |= φ. Assume for contraction that it is not the case that Kn ⊢ φ. Then it is also
not the case that Kn ⊢ ¬¬φ. This, by Definition 4.1, makes ¬φ Kn-consistent. But then by
(*) ¬φ is satisfiable, so φ is not valid. We obtain contradiction.

So, indeed, we want to show (*). We will construct a special (so-called ‘canonical’) model
MC ∈ Mn, whose worlds correspond to maximal Kn-consistent sets (denoted by V ) in the
following way.

Definition 4.3. Given a set of formulas V , we define V/Ki := {φ | Kiφ ∈ V }.

Example 1. For example, if V = {K1p,K2K1q,K1K3p∧q,K1K3q}, then V/K1 = {p,K3q}.

Definition 4.4. Let MC = (S, π,K1, . . . ,Kn), where:

S = {sV | V is a maximal Kn-consistent set}

π(sV )(p) =

{
1 if p ∈ V
0 if p /∈ V

Ki = {(sV , sW ) | V/Ki ⊆W}

Given that construction we want to show that:

(MC , sV ) |= φ iff φ ∈ V , (**)

because if we knew that (**) is true, we would get (*) in the following way. By Lemma 4.2,
if φ is Kn-consistent, then φ is contained in some maximal Kn-consistent set V . From (**)
it follows that (MC , sV ) |= φ, and so φ is satisfiable in MC . Hence, φ is satisfiable wrtMn.

Now we show that: (MC , sV ) |= φ iff φ ∈ V by induction on the structure of φ.

Base case: φ is a primitive proposition p. Then (MC , sV ) |= p iff p ∈ V , by π.

Inductive hypothesis: Assume that for γ := ψ,ψ1, ψ2 we have that (MC , SV ) |= γ iff
γ ∈ V .

We have the following cases:

1. φ := ¬ψ. Then we have: (MC , sV ) |= φ iff (MC , sV ) |= ¬ψ iff it is not the case that
(MC , sV ) |= ψ iff it is not the case that ψ ∈ V iff ¬ψ ∈ V iff φ ∈ V.

2. φ := ψ1 ∧ ψ2. The argument here is analogous to the one above.

3. φ := Kiψ. We need to show that (MC , SV ) |= φ iff φ ∈ V , we will show the two
directions separately.

(←) Assume that φ ∈ V . Then ψ ∈ V/Ki and, by definition of Ki, if (sV , sW ) ∈ Ki,
then ψ ∈ W . Thus, using the induction hypothesis, (MC , sW ) |= ψ for all W such
that (sV , sW ) ∈ Ki. By the definition of |=, it follows that (MC , sV ) |= Kiψ.
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(→) Assume (MC , sV ) |= Kiψ. It follows that the set (V/Ki) ∪ {¬ψ} is not Kn-
consistent. So, there must be some finite subset, say {φ1, . . . , φk,¬ψ}, which is not
Kn-consistent. We have:

Kn ⊢ φ1 → φ2 → (. . .→ (φk → ψ) . . .) (propositional logic)

Kn ⊢ Ki(φ1 → (φ2 → (. . .→ (φk → ψ) . . .))) (R2)

Kn ⊢ Ki(φ1 → (φ2 → (. . .→ (φk → ψ) . . .)))→
Kiφ1 → (Kiφ2 → (. . . → (Kiφk → Kiψ) . . .)) (induction on k, A2, propositional

logic)

Kn ⊢ Kiφ1 → Kiφ2 → (. . .→ (Kiφk → Kiψ) . . .) (R1)

Kiφ1 → Kiφ2 → (. . .→ (Kiφk → Kiψ) . . .) ∈ V (Lemma 4.3)

Because φ1, . . . , φk ∈ V/Ki, we have Kiφ1, . . . ,Kiφk ∈ V .

By Lemma 4.3, we have Kiψ ∈ V .
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