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THE STRUCTURE OF THIS COURSE

Lecture 1. Introduction to Learning and Epistemic Logic

Lecture 2. Dynamic Epistemic Logic and Belief Revision

Lecture 3. Dynamic Logic over Neural Networks

Lecture 4. Iterated Updates and Learnability

Lecture 5. Current Topics on Learnability
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PLAN FOR TODAY

1 Inductive Inference: The Eleusis Game

2 Learning Paradigms and Perspectives

3 Introduction to Epistemic Logic
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INDUCTIVE INFERENCE: CARD GAME

What is the rule behind this sequence of cards?

A♠ Q♠ 3♠ A♠ Q♠ 4♡ . . .

5 / 50



INDUCTIVE INFERENCE: CARD GAME

What is the rule behind this sequence of cards?

A♠

Q♠ 3♠ A♠ Q♠ 4♡ . . .

5 / 50



INDUCTIVE INFERENCE: CARD GAME

What is the rule behind this sequence of cards?

A♠ Q♠

3♠ A♠ Q♠ 4♡ . . .

5 / 50



INDUCTIVE INFERENCE: CARD GAME

What is the rule behind this sequence of cards?

A♠ Q♠ 3♠

A♠ Q♠ 4♡ . . .

5 / 50



INDUCTIVE INFERENCE: CARD GAME

What is the rule behind this sequence of cards?

A♠ Q♠ 3♠ A♠

Q♠ 4♡ . . .

5 / 50



INDUCTIVE INFERENCE: CARD GAME

What is the rule behind this sequence of cards?

A♠ Q♠ 3♠ A♠ Q♠

4♡ . . .

5 / 50



INDUCTIVE INFERENCE: CARD GAME

What is the rule behind this sequence of cards?

A♠ Q♠ 3♠ A♠ Q♠ 4♡

. . .

5 / 50



INDUCTIVE INFERENCE: CARD GAME

What is the rule behind this sequence of cards?

A♠ Q♠ 3♠ A♠ Q♠ 4♡ . . .

5 / 50



HOW MANY DIFFERENT ABSTRACT SCENARIOS?

Assume we have at our disposal unlimited amount of playing cards.

1. How many different (kinds of) playing cards do we have?

2. How many different beginnings of length 1?

3. How many different beginnings of length 2?

4. How many different infinite sequences?
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THE INFINITIES OF INDUCTIVE INFERENCE

1. A♠ A♠ A♠ A♠ A♠ A♠ . . .

2. A♣ A♣ A♣ A♣ A♣ A♣ . . .

3. A♡ A♡ A♡ A♡ A♡ A♡ . . .

4. A♢ Q♠ 3♠ 8♡ 2♡ 5♠ . . .

5. A♠ Q♠ 7♠ J♠ 5♠ 5♠ . . .

. . .
m. A♣ A♡ A♣ A♡ A♣ A♢ . . .

. . .
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HOW MANY POSSIBLE RULES ARE THERE?

1. In principle...

2. Rule written down on a piece of paper.

3. Rule expressed by a natural language sentence.

4. Rule described by a theory that fills a 300 pages book.

5. Rule encoded by a Turing Machine program.

Descriptions are finite, and there are countably many of them.
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HOW MANY SEQUENCES COMPLY TO ONE RULE?

1. The sequence has solely A♠-cards.

2. The sequence has solely ♠-cards.

3. The sequence has ♡-cards on even places.

4. The sequence is definable in first-order logic.

5. etc...
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DIFFERENT HYPOTHESIS SPACES

1. {(all cards are ♠), (all cards are ♢)}
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3. {(exactly n cards are ♡) ∣ n ∈ N}

4. {(exactly n cards are ♡) ∣ n ∈ N} ∪ {(∞ cards are ♡)}
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WHAT DO WE MEAN BY ‘LEARNING’?
We will present a general qualitativemodel of (exact) learning:

• An agent receives incoming data consistent with an underlying
concept

• She learns something about the underlying concept, e.g., she achieves
a desired type of knowledge or belief about the underlying concept.

Our perspective covers different learning paradigms:

• Set Learning: Computational Learning Theory

• Function Learning: Machine Learning, Bayesian Learning, &
Reinforcement Learning

• Model-Theoretic Learning: Belief Revision Theory & Dynamic
Epistemic Logic

19 / 50



LEARNING PARADIGMS

1 Possible realities:

2 Hypotheses:

3 Information accessible to the learner:

4 Learner:

5 Success criterion:
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LEARNING PARADIGMS
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1 Possible realities:
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LEARNING PARADIGMS
Model-Theoretic Learning

1 Possible realities:

Models & states over a given logic (language & semantics)

2 Hypotheses:

Formulas in the logic

3 Information accessible to the learner:

Sequences of atomic formulas and negations thereof

4 Learner:

Function that takes a sequence and outputs a hypothesis

5 Success criterion:

After finite number of outputs stabilize on a correct answer
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ADDITIONAL NOTES ON PARADIGM SPECIFICATION

• Hypotheses are systematic descriptions of possible realities.

• The hypotheses are finite descriptions of sets / functions / formulas

• e.g., Turing machines, grammars, programs, logical formulas, patterns
of neural network weights, etc.
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ADDITIONAL NOTES ON PARADIGM SPECIFICATION

• In interesting cases the data available at a given step presents only
partial information about a possible reality.

• The character of data is determined by the setting, e.g. in language
learning one might consider only positive or positive and negative
information about a possible reality.

• In the basic setting, data is “passively” presented to the learner. In
some paradigms the learner can actively request or give attention to
particular information.
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ADDITIONAL NOTES ON PARADIGM SPECIFICATION

• Finite identifiability

• Identifiability in the limit

• Gradual identifiability

We will fix the success criterion to be:

After a finite time the learner’s answers stabilize to the correct answer.
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THE GAME OF LEARNING IN THE LIMIT

Just like our card game, you can think of learning in general as a game
played between a learner and nature.

• A class of possible worlds (available to both players).

• Nature chooses one of them (learner does not know which).

• Nature generates data about the world.

• From inductively given data learner draws her conjectures.

• After each new input, learner can answer with an updated hypothesis.

• Learner succeeds if she stabilizes to a correct hypothesis.

Her success depends on the problem, but also on her learning strategy.
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ONCE AGAIN

• Finite identifiability: results in knowledge

• Identifiability in the limit: results in safe belief

• Gradual identifiability: Result is safely converging belief
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2 Learning Paradigms and Perspectives

3 Introduction to Epistemic Logic
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KNOWLEDGE AND POSSIBLE WORLDS

• Besides of the current state of affairs,

• there is a number of other possible states of affairs or “worlds”.

An agent knowsφ ifφ is true at all the worlds she considers possible.
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SEATTLE EXAMPLE

Ann is walking the streets of Copenhagen on a sunny day. She has no information
at all about the weather in Seattle.

Thus, in all the worlds that she considers possible, it is sunny in Copenhagen.

Since she has no information about the weather in Seattle, there are worlds she
considers possible in which it is sunny in Seattle, and others in which not.

Thus, this agent knows that it is sunny in Copenhagen, but she does not know
whether it is sunny in Seattle.
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SEATTLE EXAMPLE

If the agent acquires additional information from a reliable source:

It is currently sunny in Seattle.

She would no longer consider possibilities in which it is raining in Seattle.

Intuitively, the fewer worlds = less uncertainty, andmore knowledge.
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EPISTEMIC LOGIC: BRIEF HISTORY

Epistemic logic was introduced as a
modal logic in 1962 by Jaakko Hintikka.

In his logic both knowledge and belief are
introduced as two separate concepts. His
logic had two modal operators K and B
(for knowledge and belief) to represent
the two attitudes separately.
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SYNTAX: THE LANGUAGE OF EPISTEMIC LOGIC

Definition (Language of Epistemic Logic)
Prop is a (countable) set of propositions, with p ∈ Prop, and A = {1, . . . ,n}
is a set of agents.

φ := ⊺ ∣ p ∣ ¬φ ∣φ ∧φ ∣ Kiφ

where ⊺ is a special symbol and i ∈ A is the name of some agent.

In case we are only dealing with one agent, we can also omit the index.
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SYNTAX: THE LANGUAGE OF EPISTEMIC LOGIC

Kφ:

I know thatφ.

¬Kφ: I don’t know thatφ.

K¬φ: I know that notφ.
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SEMANTICS: MODELS OF EPISTEMIC LOGIC

Definition (Possible world model aka epistemic model aka Kripkemodel)
A possible worldmodelM for n agents over Prop is (S,K1, . . . ,Kn, v),
where:

1. S is a non-empty set states (or worlds);

2. for each agent i, Ki is a binary relation on S.

3. v : Prop→ ℘(S) is a valuation;
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ADDITIONAL EXPLANATION

1. v tells us whether a proposition is true or false in state.

2. Ki captures the possibility relation according to agent i, i.e.,

3. (s, t) ∈Ki if agent i considers t possible given her information in s.

4. Ki is a possibility (or accessibility, or indistinguishability) relation; it
says what worlds agent i considers possible (or can access) in any
given world.
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EQUIVALENCE POSSIBILITY RELATION

Ki is an equivalence relation on S, i.e., it is a binary relation that is:

1. reflexive: for all s ∈ S, we have (s, s) ∈Ki,

2. symmetric: for all s, t ∈ S, we have (s, t) ∈Ki iff (t, s) ∈Ki,

3. transitive: for all s, t,u ∈ S, we have that if (s, t) ∈Ki and (t,u) ∈Ki,
then (s,u) ∈Ki.
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WHEN IS A FORMULA TRUE IN A SITUATION?

We write (M, s) ⊧ φ to say thatφ is true at s inM.

Definition

(M, s) ⊧ ⊺ always
(M, s) ⊧ p iff s ∈ v(p)
(M, s) ⊧ ¬φ iff it is not the case that: (M, s) ⊧ φ
(M, s) ⊧ φ ∧ψ iff (M, s) ⊧ φ and (M, s) ⊧ ψ
(M, s) ⊧ Kiφ iff for all vwith (s, v) ∈Ki, (M, v) ⊧ φ

We use (M, s) /⊧ φ to express thatφ is false at s inM.

Kiφ is false at state swhen there a t such that (s, t) ∈Ki andφ is false at v.
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PRACTICE: EPISTEMIC LOGIC

See Day 1 practice sheet
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MOTIVATION

What are the properties of K?

How well does the K operator model knowledge?

We will try to answer this question
by looking at formulas about knowledge that are always true

in a given kind of possible world models.
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VALIDITY AND SATISFIABILITY

Definition
Given a modelM = (S,K1, . . . ,Kn, v), we say that:

• φ is valid inM,M ⊧ φ, if (M, s) ⊧ φ for every state s ∈ S.

• φ is satisfiable inM, if (M, s) ⊧ φ for some state s ∈ S.

• φ is valid, ⊧ φ, ifφ is valid in all models.

• φ is satisfiable, ifφ is satisfiable in a model.
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VALID LAWS OF KNOWLEDGE (THE S5 SYSTEM)

The following formulas are valid whenever Ki is an equivalence relation:

Distribution of Knowledge: Kiφ ∧ Ki(φ→ ψ) → Kiψ
Each agent knows all the logical consequences of her knowledge.

Knowledge Generalization: For all modelsM, ifM ⊧ φ thenM ⊧ Kiφ
Each agent knows all the formulas that are valid in a given model.

Truthfulness of Knowledge: Kiφ→ φ
Agents can only know facts. (Contrast this with belief)

Pos. and Neg. Introspection: Kiφ→ KiKiφ and ¬Kiφ→ Ki¬Kiφ
Agents know what they know and what they do not know.
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EXAMPLE OF VALIDITY ARGUMENTS: POSITIVE INTROSPECTION

Proposition
⊧ Kiφ→ KiKiφ in the class of models with equivalence possibility relations.

s
Kiφ
KiKiφ

φ
Kiφ

φ

φ
Kiφ

φ

i

i

i

i

i

i
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AXIOMATIC SYSTEM

An axiomatic system consists of:

• a set of formulas called axioms and

• a set of rules of inference.

Together they are used to infer (derive) theorems.

42 / 50



PROOF IN AN AXIOMATIC SYSTEM

A proof of a formulaψ is a sequence of formulasφ1, . . . ,φn, withφn = ψ,
such that eachφk is either an axiom or it is derived from previous formulas
by rules of inference.

When such a proof exists, we say thatψ is a theorem (of the system) and
thatψ is provable (in the system), denoted by:

⊢ ψ

We can use substitution instances of axioms and inference rules.

E.g., the formula (p ∨ q) ∨ ¬(p ∨ q) is an instance of the tautologyφ ∨ ¬φ.
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SYSTEM S5 FOR EPISTEMIC LOGIC

A1. All tautologies of propositional logic

A2. (Kiφ ∧ Ki(φ→ ψ)) → Kiψ, i ∈ {1, . . . ,n}

A3. Kiφ→ φ, i ∈ {1, . . . ,n}

A4. Kiφ→ KiKiφ, i ∈ {1, . . . ,n}

A5. ¬Kiφ→ Ki¬Kiφ, i ∈ {1, . . . ,n}

⊢ φ ⊢ (φ→ ψ)

ψ
R1 ⊢ φ

Kiφ, for each i ∈ {1, . . . ,n} R2
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LANGUAGES AND MODELS

Take Prop to be a set of propositions.

• Let Ln(Prop) be the set of formulas that can be built up starting from
the primitive propositions in Prop, using ∧, ¬, and K1, . . . ,Kn.

• Let Mn(Prop) be the class of all possible world models for n agents
over Prop (with no restrictions on the Ki relations).

• Mn(Prop) can be restricted by specifying the Ki relations, e.g.:

for Mrst
n (Prop), Ki relations are reflexive, symmetric, and transitive.

Note: Prop is fixed from now on and we suppress it from the notation.
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VALIDITY WITH RESPECT TO A CLASS OF MODELS

Definition
We say thatφ is valid with respect to Mn, and write Mn ⊧ φ, ifφ is valid in
all the structures in Mn.

• If M is some subclass of Mn,φ is valid with respect to M, M ⊧ φ, ifφ
is valid in all the structures in M.

• If M is some subclass of Mn,φ is satisfiable with respect to M, ifφ is
satisfied in some structure in M.
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SOUNDNESS AND COMPLETENESS
What is the ideal relationship between

provability (in a given axiomatic system)
and

validity (in a given class of models)?

Definition
1. An axiom system AX is sound for a language L wrt a class M of

structures if every formula in L provable in AX is valid wrt M.

2. An axiom system AX is complete for a language L wrt a class M of
structures if every formula in L that is valid wrt M is provable in AX.

AX characterizesM if it is sound and complete axiomatization ofM

in other words

for anyφ, AX ⊢ φ if and only if M ⊧ φ
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SOUNDNESS AND COMPLETENESS OFKn AND S5n

Theorem
Kn is sound and complete with respect toMn for the languageLn.

Theorem

S5n is sound and complete with respect toMrst
n for the languageLn.
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OVERVIEW OF COMPLETENESS RESULTS
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END OF LECTURE 1

Thank you!
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