Computational Learning in Dynamic Logics

Extra Exercises
Day 2

Nina Gierasimczuk and Caleb Schultz Kisby

@NASSLLI, June 2025

Ex. 1. Comparing $[!\varphi]$ and $\langle !\varphi \rangle$. Let us define the semantic of $\langle !\varphi \rangle$ in the following way:

$$(M,s) \models \langle !\varphi \rangle \psi \text{ iff } (M,s) \models \neg [!\varphi] \neg \psi.$$

a. Decide if $(M,s) \models \langle !\varphi \rangle \psi$ is equivalent to:

$$(M,s) \models \varphi \text{ or } (M|\varphi,s) \models \psi.$$

- b. Justify your answer.
- c. What is the intuitive meaning of $\langle !\varphi \rangle$?

Why is it not '! $(\varphi \wedge \psi)$ '? In other words, find a counterexample to:

$$\models [!\varphi][!\psi]\theta \leftrightarrow [!(\varphi \wedge \psi)]\theta.$$

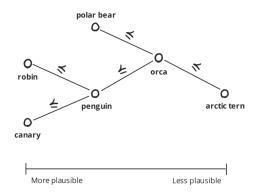
Ex. 2. In Lecture 2, the following validity expressed how to perform sequential composition of announcements:

$$\models [!\varphi][!\psi]\theta \leftrightarrow [!(\varphi \wedge [!\varphi]\psi)]\theta.$$

Why not '! $(\varphi \wedge \psi)$ '? In other words, find a counterexample to:

$$\models [!\varphi][!\psi]\theta \leftrightarrow [!(\varphi \wedge \psi)]\theta.$$

Ex. 3. Consider the plausibility model M over animals that we discussed in class:



Let the set of propositions be $Prop = \{BIRD, POLAR, MAMMAL, FLY, PENGUIN, ROBIN\}$, with the valuations:

Think of ROBIN as the classification or predicate "is a robin," and 'robin' as an individual robin.

Determine the validity of the following formulas. (Recall that $M \models \varphi$ whenever $M, s \models \varphi$ for all states s in the model. Notice: the semantics of $\mathbf{B}^{\varphi}\psi$ do not depend on the state s.)

Expression	Does it hold?		Explanation
$M \models \text{BIRD} \rightarrow \text{FLY}$	yes	no	
$M \models \text{PENGUIN} \rightarrow \text{FLY}$	yes	no	
$M \models \mathbf{B}^{\text{bird}}$ (FLY)	yes	no	
$M \models \mathbf{B}^{\text{polar}}\left(\text{fly}\right)$	yes	no	
$M \models \mathbf{B}^{\text{BIRD} \land \text{POLAR}}(\neg \text{FLY})$	yes	no	
$M \models \mathbf{B}^{\text{BIRD} \land \neg \text{POLAR}} \text{ (FLY)}$	yes	no	

Ex. 4. Assume Bob's believes set $p, p \leftrightarrow q$, and $\neg r$. Come up with an appropriate prior plausibility order on W (the set of all possible truth assignments over p, q, r), which satisfies both of the requirements below:

- 1. after minimal revision with r Bob would believe that q;
- 2. after lexicographic revision with $p \to q$ Bob would believe that $\neg p$.