
COMPUTATIONAL LEARNING IN DYNAMIC LOGICS
DAY 3: UPDATES ON NEURAL NETWORKS

Nina Gierasimczuk and Caleb Schultz Kisby

@NASSLLI, June 2025

Course Homepage:
https://sites.google.com/view/nasslli25-learning-in-del

1 / 27

https://sites.google.com/view/nasslli25-learning-in-del

PLAN FOR TODAY

1 Overview of Neural Networks

2 A Logic for Neural Network Inference

3 Neural Network Update in Dynamic Logic

2 / 27

PLAN FOR TODAY

1 Overview of Neural Networks

2 A Logic for Neural Network Inference

3 Neural Network Update in Dynamic Logic

3 / 27

ARTIFICIAL NEURAL NETWORKS
• A neural network is just N = (N,E,W,A)

– neurons, edges, weights, activation function
• Neurons are successively activated by their predecessors:

↝ ↝

4 / 27

ARTIFICIAL NEURAL NETWORKS
• A neural network is just N = (N,E,W,A)

– neurons, edges, weights, activation function
• Neurons are successively activated by their predecessors:

↝ ↝

4 / 27

ARTIFICIAL NEURAL NETWORKS
• A neural network is just N = (N,E,W,A)

– neurons, edges, weights, activation function
• Neurons are successively activated by their predecessors:

↝ ↝

4 / 27

ARTIFICIAL NEURAL NETWORKS
• A neural network is just N = (N,E,W,A)

– neurons, edges, weights, activation function
• Neurons are successively activated by their predecessors:

↝ ↝

4 / 27

ARTIFICIAL NEURAL NETWORKS
• A neural network is just N = (N,E,W,A)

– neurons, edges, weights, activation function
• Neurons are successively activated by their predecessors:

↝ ↝

4 / 27

ARTIFICIAL NEURAL NETWORKS
• A neural network is just N = (N,E,W,A)

– neurons, edges, weights, activation function
• Neurons are successively activated by their predecessors:

↝ ↝

4 / 27

ARTIFICIAL NEURAL NETWORKS
• A neural network is just N = (N,E,W,A)

– neurons, edges, weights, activation function
• Neurons are successively activated by their predecessors:

↝ ↝

4 / 27

ARTIFICIAL NEURAL NETWORKS
• A neural network is just N = (N,E,W,A)

– neurons, edges, weights, activation function
• Neurons are successively activated by their predecessors:

↝ ↝

4 / 27

ARTIFICIAL NEURAL NETWORKS
• A neural network is just N = (N,E,W,A)

– neurons, edges, weights, activation function
• Neurons are successively activated by their predecessors:

↝ ↝

4 / 27

ARTIFICIAL NEURAL NETWORKS
• A neural network is just N = (N,E,W,A)

– neurons, edges, weights, activation function
• Neurons are successively activated by their predecessors:

↝ ↝ ¬FLIES

4 / 27

(BINARY) ARTIFICIAL NEURAL NETWORKS

• We take the activation function A to be a binary step function

• This is a useful abstraction for connecting nets with logic, formal
languages, and and automata

• The net’s activation patterns are just sets of neurons.
5 / 27

(BINARY) ARTIFICIAL NEURAL NETWORKS

• We take the activation function A to be a binary step function

• This is a useful abstraction for connecting nets with logic, formal
languages, and and automata

• The net’s activation patterns are just sets of neurons.
5 / 27

(BINARY) ARTIFICIAL NEURAL NETWORKS

• We take the activation function A to be a binary step function

• This is a useful abstraction for connecting nets with logic, formal
languages, and and automata

• The net’s activation patterns are just sets of neurons.
5 / 27

PLAN FOR TODAY

1 Overview of Neural Networks

2 A Logic for Neural Network Inference

3 Neural Network Update in Dynamic Logic

6 / 27

SYNTAX: LANGUAGE OF NEURAL NETWORK INFERENCE

Definition (Language of Epistemic Logic)
Take a countable set of propositions PROP.

φ := ⊺ p ¬φ φ ∧φ Aφ ⟨C⟩φ

for all p ∈ PROP. The usual abbreviations are ∨,→, and C (dual to ⟨C⟩)

• Notice that we’re giving the semantics in terms of the◇-variant ⟨C⟩

• Just like before, we will interpret ⟨C⟩φ in a model, at a world.

• The intended interpretation:

⟨C⟩φ holds in a net, at a neuronw ifw is activated by inputφ.

7 / 27

SYNTAX: LANGUAGE OF NEURAL NETWORK INFERENCE

Definition (Language of Epistemic Logic)
Take a countable set of propositions PROP.

φ := ⊺ p ¬φ φ ∧φ Aφ ⟨C⟩φ

for all p ∈ PROP. The usual abbreviations are ∨,→, and C (dual to ⟨C⟩)

• Notice that we’re giving the semantics in terms of the◇-variant ⟨C⟩

• Just like before, we will interpret ⟨C⟩φ in a model, at a world.

• The intended interpretation:

⟨C⟩φ holds in a net, at a neuronw ifw is activated by inputφ.

7 / 27

SYNTAX: LANGUAGE OF NEURAL NETWORK INFERENCE

Definition (Language of Epistemic Logic)
Take a countable set of propositions PROP.

φ := ⊺ p ¬φ φ ∧φ Aφ ⟨C⟩φ

for all p ∈ PROP. The usual abbreviations are ∨,→, and C (dual to ⟨C⟩)

• Notice that we’re giving the semantics in terms of the◇-variant ⟨C⟩

• Just like before, we will interpret ⟨C⟩φ in a model, at a world.

• The intended interpretation:

⟨C⟩φ holds in a net, at a neuronw ifw is activated by inputφ.

7 / 27

SYNTAX: LANGUAGE OF NEURAL NETWORK INFERENCE

Definition (Language of Epistemic Logic)
Take a countable set of propositions PROP.

φ := ⊺ p ¬φ φ ∧φ Aφ ⟨C⟩φ

for all p ∈ PROP. The usual abbreviations are ∨,→, and C (dual to ⟨C⟩)

• Notice that we’re giving the semantics in terms of the◇-variant ⟨C⟩

• Just like before, we will interpret ⟨C⟩φ in a model, at a world.

• The intended interpretation:

⟨C⟩φ holds in a net, at a neuronw ifw is activated by inputφ.

7 / 27

SEMANTICS: NEURAL NETWORK CLOSURE OPERATOR

• A binary neural network is just N = (N,E,W,A)

• Each choice of E,W,A specifies a transition function from one
activation pattern S ⊆ N to the next

• Given initial state S0, FS0 : ℘(N) → ℘(N) is given by

FS0(S) = S0 ∪ {w ∣ A(∑
u∈preds(w)

W(u,w) ⋅χS(u)) = 1}

“the set of all nodesw activated by their immediate predecessors u”

• χS(u) = 1 iff u ∈ S indicates whether uwas activated previously

8 / 27

SEMANTICS: NEURAL NETWORK CLOSURE OPERATOR

• A binary neural network is just N = (N,E,W,A)

• Each choice of E,W,A specifies a transition function from one
activation pattern S ⊆ N to the next

• Given initial state S0, FS0 : ℘(N) → ℘(N) is given by

FS0(S) = S0 ∪ {w ∣ A(∑
u∈preds(w)

W(u,w) ⋅χS(u)) = 1}

“the set of all nodesw activated by their immediate predecessors u”

• χS(u) = 1 iff u ∈ S indicates whether uwas activated previously

8 / 27

SEMANTICS: NEURAL NETWORK CLOSURE OPERATOR

• A binary neural network is just N = (N,E,W,A)

• Each choice of E,W,A specifies a transition function from one
activation pattern S ⊆ N to the next

• Given initial state S0, FS0 : ℘(N) → ℘(N) is given by

FS0(S) = S0 ∪ {w ∣ A(∑
u∈preds(w)

W(u,w) ⋅χS(u)) = 1}

“the set of all nodesw activated by their immediate predecessors u”

• χS(u) = 1 iff u ∈ S indicates whether uwas activated previously

8 / 27

SEMANTICS: NEURAL NETWORK CLOSURE OPERATOR

• A binary neural network is just N = (N,E,W,A)

• Each choice of E,W,A specifies a transition function from one
activation pattern S ⊆ N to the next

• Given initial state S0, FS0 : ℘(N) → ℘(N) is given by

FS0(S) = S0 ∪ {w ∣ A(∑
u∈preds(w)

W(u,w) ⋅χS(u)) = 1}

“the set of all nodesw activated by their immediate predecessors u”

• χS(u) = 1 iff u ∈ S indicates whether uwas activated previously

8 / 27

SEMANTICS: NEURAL NETWORK CLOSURE OPERATOR

• Notice that the activated nodes could have oscillatory behavior!

• But we only want nets that have a unique “answer” for each input

9 / 27

SEMANTICS: NEURAL NETWORK CLOSURE OPERATOR

• Notice that the activated nodes could have oscillatory behavior!

• But we only want nets that have a unique “answer” for each input

9 / 27

SEMANTICS: NEURAL NETWORK CLOSURE OPERATOR

• Notice that the activated nodes could have oscillatory behavior!

• But we only want nets that have a unique “answer” for each input

9 / 27

SEMANTICS: NEURAL NETWORK CLOSURE OPERATOR

• Notice that the activated nodes could have oscillatory behavior!

• But we only want nets that have a unique “answer” for each input

9 / 27

SEMANTICS: NEURAL NETWORK CLOSURE OPERATOR

• Notice that the activated nodes could have oscillatory behavior!

• But we only want nets that have a unique “answer” for each input

9 / 27

SEMANTICS: NEURAL NETWORK CLOSURE OPERATOR

• Notice that the activated nodes could have oscillatory behavior!

• But we only want nets that have a unique “answer” for each input

9 / 27

SEMANTICS: NEURAL NETWORK CLOSURE OPERATOR

• Notice that the activated nodes could have oscillatory behavior!

• But we only want nets that have a unique “answer” for each input

9 / 27

SEMANTICS: NEURAL NETWORK CLOSURE OPERATOR

• Notice that the activated nodes could have oscillatory behavior!

• But we only want nets that have a unique “answer” for each input

9 / 27

SEMANTICS: NEURAL NETWORK CLOSURE OPERATOR

• Notice that the activated nodes could have oscillatory behavior!

• But we only want nets that have a unique “answer” for each input

9 / 27

SEMANTICS: NEURAL NETWORK CLOSURE OPERATOR

• Notice that the activated nodes could have oscillatory behavior!

• But we only want nets that have a unique “answer” for each input

9 / 27

SEMANTICS: NEURAL NETWORK CLOSURE OPERATOR

• Notice that the activated nodes could have oscillatory behavior!

• But we only want nets that have a unique “answer” for each input

9 / 27

SEMANTICS: NEURAL NETWORK CLOSURE OPERATOR

Postulate
We assume for all S0 ⊆ N, FS0 repeatedly applied to S0,

S0, FS0(S0), FS0(FS0(S0)), . . . , FkS0(S0), . . .

eventually stabilizes to a unique activation pattern.

Definition
Let Clos : ℘(N) → ℘(N) be the function that produces this stable activation
pattern.

10 / 27

SEMANTICS: NEURAL NETWORK CLOSURE OPERATOR

Postulate
We assume for all S0 ⊆ N, FS0 repeatedly applied to S0,

S0, FS0(S0), FS0(FS0(S0)), . . . , FkS0(S0), . . .

eventually stabilizes to a unique activation pattern.

Definition
Let Clos : ℘(N) → ℘(N) be the function that produces this stable activation
pattern.

10 / 27

SEMANTICS: FORMAL DEFINITION
Definition (Neural Network Semantics)
Given a binary neural network model N = (N,E,W,A,V), where
V : Prop→ ℘(N), and a neuron (“world”)w ∈ N:

N,w ⊧ p iff w ∈ V(p) for each p ∈ Prop
N,w ⊧ ¬φ iff not N,w ⊧ φ
N,w ⊧ φ ∧ψ iff N,w ⊧ φ and N,w ⊧ ψ
N,w ⊧ Aφ iff for allw ∈ Nwhatsoever, N,w ⊧ φ
N,w ⊧ ⟨C⟩φ iff w ∈ Clos(JφK)
and dually:

N,w ⊧ Cφ iff w ∈ (Clos(JφK)∁)∁

where JφK = {u ∣ N,u ⊧ φ} is the set of worlds whereφ holds (the set of
neurons that are active forφ)

11 / 27

EXPRESSING NEURAL NETWORK INFERENCE
• The Cmodality gives information about the net’s answer to an input

The net satisfies A(C(φ) → ψ) iff The net satisfies A(ψ→ ⟨C⟩(φ))

iff Clos(JφK) ⊇ JψK

iff The net classifiesφ asψ

12 / 27

EXPRESSING NEURAL NETWORK INFERENCE
• The Cmodality gives information about the net’s answer to an input

The net satisfies A(C(φ) → ψ) iff The net satisfies A(ψ→ ⟨C⟩(φ))
iff Clos(JφK) ⊇ JψK

iff The net classifiesφ asψ

12 / 27

EXPRESSING NEURAL NETWORK INFERENCE
• The Cmodality gives information about the net’s answer to an input

The net satisfies A(C(φ) → ψ) iff The net satisfies A(ψ→ ⟨C⟩(φ))
iff Clos(JφK) ⊇ JψK

iff The net classifiesφ asψ
12 / 27

EXAMPLE: EXPRESSING NEURAL NETWORK INFERENCE

• In the exercises, we will ask you will to show
N /⊧ A(C(PENGUIN) → FLIES)

• This means the net does not classify penguins as flying
• Yet, if we take JBIRDK = {a,b, c},

N ⊧ A(C(BIRD) → FLIES)

13 / 27

EXAMPLE: EXPRESSING NEURAL NETWORK INFERENCE

• In the exercises, we will ask you will to show
N /⊧ A(C(PENGUIN) → FLIES)

• This means the net does not classify penguins as flying

• Yet, if we take JBIRDK = {a,b, c},
N ⊧ A(C(BIRD) → FLIES)

13 / 27

EXAMPLE: EXPRESSING NEURAL NETWORK INFERENCE

• In the exercises, we will ask you will to show
N /⊧ A(C(PENGUIN) → FLIES)

• This means the net does not classify penguins as flying
• Yet, if we take JBIRDK = {a,b, c},

N ⊧ A(C(BIRD) → FLIES)
13 / 27

ADDITIONAL COMMENTS ON THIS LOGIC

The net satisfies A(C(φ) → ψ) iff The net satisfies A(ψ→ ⟨C⟩(φ))
iff Clos(JφK) ⊇ JψK

iff The net classifiesφ asψ

• What does this remind you of?

– best⪯(JφK) ⊆ JψK

– A(C(φ) → ψ), taken as a conditional, behaves exactly like Bφψ
– You can think of this as the net’s conditional belief

• Interpreting C on its own is less clear...

14 / 27

ADDITIONAL COMMENTS ON THIS LOGIC

The net satisfies A(C(φ) → ψ) iff The net satisfies A(ψ→ ⟨C⟩(φ))
iff Clos(JφK) ⊇ JψK

iff The net classifiesφ asψ

• What does this remind you of?

– best⪯(JφK) ⊆ JψK

– A(C(φ) → ψ), taken as a conditional, behaves exactly like Bφψ
– You can think of this as the net’s conditional belief

• Interpreting C on its own is less clear...

14 / 27

ADDITIONAL COMMENTS ON THIS LOGIC

The net satisfies A(C(φ) → ψ) iff The net satisfies A(ψ→ ⟨C⟩(φ))
iff Clos(JφK) ⊇ JψK

iff The net classifiesφ asψ

• What does this remind you of?

– best⪯(JφK) ⊆ JψK

– A(C(φ) → ψ), taken as a conditional, behaves exactly like Bφψ

– You can think of this as the net’s conditional belief

• Interpreting C on its own is less clear...

14 / 27

ADDITIONAL COMMENTS ON THIS LOGIC

The net satisfies A(C(φ) → ψ) iff The net satisfies A(ψ→ ⟨C⟩(φ))
iff Clos(JφK) ⊇ JψK

iff The net classifiesφ asψ

• What does this remind you of?

– best⪯(JφK) ⊆ JψK

– A(C(φ) → ψ), taken as a conditional, behaves exactly like Bφψ
– You can think of this as the net’s conditional belief

• Interpreting C on its own is less clear...

14 / 27

ADDITIONAL COMMENTS ON THIS LOGIC

The net satisfies A(C(φ) → ψ) iff The net satisfies A(ψ→ ⟨C⟩(φ))
iff Clos(JφK) ⊇ JψK

iff The net classifiesφ asψ

• What does this remind you of?

– best⪯(JφK) ⊆ JψK

– A(C(φ) → ψ), taken as a conditional, behaves exactly like Bφψ
– You can think of this as the net’s conditional belief

• Interpreting C on its own is less clear...

14 / 27

PLAN FOR TODAY

1 Overview of Neural Networks

2 A Logic for Neural Network Inference

3 Neural Network Update in Dynamic Logic

15 / 27

UPDATES ON NEURAL NETWORKS

• Unsupervised Updates

– The network learns from data that is unlabeled (no expected
answer or classification)

– Each update softly increases the net’s preference for the input
– Hebb’s rule, Oja’s rule, & competitive learning rule

• Supervised Updates

– The network learns from labeled data with an expected answer
– Each update softly increases the net’s accuracy on a function
– Backpropagation rule & delta learning rule

16 / 27

UPDATES ON NEURAL NETWORKS

• Unsupervised Updates

– The network learns from data that is unlabeled (no expected
answer or classification)

– Each update softly increases the net’s preference for the input
– Hebb’s rule, Oja’s rule, & competitive learning rule

• Supervised Updates

– The network learns from labeled data with an expected answer
– Each update softly increases the net’s accuracy on a function
– Backpropagation rule & delta learning rule

16 / 27

BACKPROPAGATION RULE
• Backpropagation is the most widely used neural network update rule

• Main idea: Backprop implements gradient descent on a net’s weights

• Given an input x⃗ with label y, the neural network gives its answer y′ to
x⃗, and each weight of the net is adjusted according to its contribution
to the error (difference between y′ and y).

17 / 27

BACKPROPAGATION RULE

https://www.youtube.com/watch?v=cANqroNVdl8

18 / 27

https://www.youtube.com/watch?v=cANqroNVdl8

ADDITIONAL COMMENTS ON NEURAL NETWORK UPDATES

• What if we could have a complete characterization of Backprop, like
we did for public announcement, LEX, and MINI?

– That would be wonderful!

– Unfortunately, this is still an open problem

• Proof of concept: Can we do this for any neural network update at all?

– Let’s consider the simplest possible one: Hebbian learning

19 / 27

ADDITIONAL COMMENTS ON NEURAL NETWORK UPDATES

• What if we could have a complete characterization of Backprop, like
we did for public announcement, LEX, and MINI?

– That would be wonderful!
– Unfortunately, this is still an open problem

• Proof of concept: Can we do this for any neural network update at all?

– Let’s consider the simplest possible one: Hebbian learning

19 / 27

ADDITIONAL COMMENTS ON NEURAL NETWORK UPDATES

• What if we could have a complete characterization of Backprop, like
we did for public announcement, LEX, and MINI?

– That would be wonderful!
– Unfortunately, this is still an open problem

• Proof of concept: Can we do this for any neural network update at all?

– Let’s consider the simplest possible one: Hebbian learning

19 / 27

ADDITIONAL COMMENTS ON NEURAL NETWORK UPDATES

• What if we could have a complete characterization of Backprop, like
we did for public announcement, LEX, and MINI?

– That would be wonderful!
– Unfortunately, this is still an open problem

• Proof of concept: Can we do this for any neural network update at all?

– Let’s consider the simplest possible one: Hebbian learning

19 / 27

HEBBIAN UPDATE RULE

Neurons that fire together wire together

JpK

• Each edge involved in the activation is “bumped up” by a fixed
learning rate η ≥ 0

• Formally: HEBB(N, JφK) = (N,E,W′,A), where
W′(u,w) = W(u,w) + η ⋅χClos(JφK)(u) ⋅χClos(JφK)(w)

20 / 27

HEBBIAN UPDATE RULE

Neurons that fire together wire together

JpK

Clos(JpK)

• Each edge involved in the activation is “bumped up” by a fixed
learning rate η ≥ 0

• Formally: HEBB(N, JφK) = (N,E,W′,A), where
W′(u,w) = W(u,w) + η ⋅χClos(JφK)(u) ⋅χClos(JφK)(w)

20 / 27

HEBBIAN UPDATE RULE

Neurons that fire together wire together

JpK

Clos(JpK)

• Each edge involved in the activation is “bumped up” by a fixed
learning rate η ≥ 0

• Formally: HEBB(N, JφK) = (N,E,W′,A), where
W′(u,w) = W(u,w) + η ⋅χClos(JφK)(u) ⋅χClos(JφK)(w)

20 / 27

HEBBIAN UPDATE RULE: EXAMPLES
• If nobody ever told you that penguins don’t fly, how could you come to

believe they don’t?

– Observe animals with similar features that don’t fly
• Now imagine you believe penguins don’t fly. What could cause you to

change your mind?
– Observe animals with similar features that do fly

21 / 27

HEBBIAN UPDATE RULE: EXAMPLES
• If nobody ever told you that penguins don’t fly, how could you come to

believe they don’t?
– Observe animals with similar features that don’t fly

• Now imagine you believe penguins don’t fly. What could cause you to
change your mind?

– Observe animals with similar features that do fly

21 / 27

HEBBIAN UPDATE RULE: EXAMPLES
• If nobody ever told you that penguins don’t fly, how could you come to

believe they don’t?
– Observe animals with similar features that don’t fly

• Now imagine you believe penguins don’t fly. What could cause you to
change your mind?

– Observe animals with similar features that do fly

21 / 27

HEBBIAN UPDATE RULE: EXAMPLES
• If nobody ever told you that penguins don’t fly, how could you come to

believe they don’t?
– Observe animals with similar features that don’t fly

• Now imagine you believe penguins don’t fly. What could cause you to
change your mind?

– Observe animals with similar features that do fly

21 / 27

HEBBIAN UPDATE RULE: EXAMPLES
• If nobody ever told you that penguins don’t fly, how could you come to

believe they don’t?
– Observe animals with similar features that don’t fly

• Now imagine you believe penguins don’t fly. What could cause you to
change your mind?

– Observe animals with similar features that do fly

21 / 27

ADDITIONAL COMMENTS ABOUT HEBBIAN UPDATE

• This kind of Hebbian update is unstable— weights will continue to
increase until they saturate

– It’s possible to prevent this by usingOja’s rule or similar
– Key idea: All weights must sum to 1
– “use it or lose it”
– It’s an open problem to completely characterize stable Hebbian

update rules

• HEBB is more gradual than LEX or MINI

– The result of LEX and MINI is a change in belief
– HEBB gently nudges us in the direction of a belief

22 / 27

ADDITIONAL COMMENTS ABOUT HEBBIAN UPDATE

• This kind of Hebbian update is unstable— weights will continue to
increase until they saturate

– It’s possible to prevent this by usingOja’s rule or similar

– Key idea: All weights must sum to 1
– “use it or lose it”
– It’s an open problem to completely characterize stable Hebbian

update rules

• HEBB is more gradual than LEX or MINI

– The result of LEX and MINI is a change in belief
– HEBB gently nudges us in the direction of a belief

22 / 27

ADDITIONAL COMMENTS ABOUT HEBBIAN UPDATE

• This kind of Hebbian update is unstable— weights will continue to
increase until they saturate

– It’s possible to prevent this by usingOja’s rule or similar
– Key idea: All weights must sum to 1
– “use it or lose it”

– It’s an open problem to completely characterize stable Hebbian
update rules

• HEBB is more gradual than LEX or MINI

– The result of LEX and MINI is a change in belief
– HEBB gently nudges us in the direction of a belief

22 / 27

ADDITIONAL COMMENTS ABOUT HEBBIAN UPDATE

• This kind of Hebbian update is unstable— weights will continue to
increase until they saturate

– It’s possible to prevent this by usingOja’s rule or similar
– Key idea: All weights must sum to 1
– “use it or lose it”
– It’s an open problem to completely characterize stable Hebbian

update rules

• HEBB is more gradual than LEX or MINI

– The result of LEX and MINI is a change in belief
– HEBB gently nudges us in the direction of a belief

22 / 27

ADDITIONAL COMMENTS ABOUT HEBBIAN UPDATE

• This kind of Hebbian update is unstable— weights will continue to
increase until they saturate

– It’s possible to prevent this by usingOja’s rule or similar
– Key idea: All weights must sum to 1
– “use it or lose it”
– It’s an open problem to completely characterize stable Hebbian

update rules

• HEBB is more gradual than LEX or MINI

– The result of LEX and MINI is a change in belief
– HEBB gently nudges us in the direction of a belief

22 / 27

ADDITIONAL COMMENTS ABOUT HEBBIAN UPDATE

• This kind of Hebbian update is unstable— weights will continue to
increase until they saturate

– It’s possible to prevent this by usingOja’s rule or similar
– Key idea: All weights must sum to 1
– “use it or lose it”
– It’s an open problem to completely characterize stable Hebbian

update rules

• HEBB is more gradual than LEX or MINI

– The result of LEX and MINI is a change in belief

– HEBB gently nudges us in the direction of a belief

22 / 27

ADDITIONAL COMMENTS ABOUT HEBBIAN UPDATE

• This kind of Hebbian update is unstable— weights will continue to
increase until they saturate

– It’s possible to prevent this by usingOja’s rule or similar
– Key idea: All weights must sum to 1
– “use it or lose it”
– It’s an open problem to completely characterize stable Hebbian

update rules

• HEBB is more gradual than LEX or MINI

– The result of LEX and MINI is a change in belief
– HEBB gently nudges us in the direction of a belief

22 / 27

HEBB∗: “FIXED-POINT” HEBBIAN UPDATE

JpK

Clos(JpK)

• If we repeatedly apply HEBB(N,S), eventually these weights will
saturate (they will not inhibit any incoming activations)

• Let iter be the number of iterations needed to reach this fixed point

• Let HEBB∗(N,S) = (N,E,W′,A), where
W′(u,w) = W(u,w) + iter ⋅ η ⋅χClos(JφK)(u) ⋅χClos(JφK)(w)

23 / 27

HEBB∗: “FIXED-POINT” HEBBIAN UPDATE

JpK

Clos(JpK)

• If we repeatedly apply HEBB(N,S), eventually these weights will
saturate (they will not inhibit any incoming activations)

• Let iter be the number of iterations needed to reach this fixed point

• Let HEBB∗(N,S) = (N,E,W′,A), where
W′(u,w) = W(u,w) + iter ⋅ η ⋅χClos(JφK)(u) ⋅χClos(JφK)(w)

23 / 27

HEBB∗: “FIXED-POINT” HEBBIAN UPDATE

JpK

Clos(JpK)

• If we repeatedly apply HEBB(N,S), eventually these weights will
saturate (they will not inhibit any incoming activations)

• Let iter be the number of iterations needed to reach this fixed point

• Let HEBB∗(N,S) = (N,E,W′,A), where
W′(u,w) = W(u,w) + iter ⋅ η ⋅χClos(JφK)(u) ⋅χClos(JφK)(w)

23 / 27

NEURAL NETWORK UPDATES IN DYNAMIC LOGIC

• We can use the DEL trick to give semantics using neural network
updates

Definition (Neural Network Semantics)
Let N be a binary neural network model,w ∈ N, and let
U : Net→ L→Net be any unsupervised update:

N,w ⊧ [φ]ψ iff Update(N, JφK),w ⊧ ψ

For Hebbian updates in particular:

N,w ⊧ [φ]HEBBψ iff HEBB(N, JφK),w ⊧ ψ
N,w ⊧ [φ]HEBB∗ψ iff HEBB∗(N, JφK),w ⊧ ψ

24 / 27

REDUCTION LAWS FOR HEBB∗

The following formulas are valid over neural network models:

Hebb∗-Propositions [φ]HEBB∗p↔ p

Hebb∗-Negation [φ]HEBB∗¬ψ↔ ¬[φ]HEBB∗ψ

Hebb∗-Conjunction [φ]HEBB∗(ψ ∧ θ) ↔ [φ]HEBB∗ψ ∧ [φ]HEBB∗θ

Hebb∗-Diamond [φ]HEBB∗◇ψ↔◇[φ]HEBB∗ψ

Hebb∗-Closure [φ]HEBB∗⟨C⟩ψ↔
⟨C⟩([φ]HEBB∗ψ ∨ (⟨C⟩φ ∧◇(⟨C⟩φ ∧ ⟨C⟩[φ]HEBB∗ψ)))

Note: We didn’t define◇ for neural networks; here are its semantics:
N,w ⊧ ◇φ iff there is an E-path from some u ∈ JφK tow.

25 / 27

REDUCTION LAWS FOR HEBB∗

The following formulas are valid over neural network models:

Hebb∗-Propositions [φ]HEBB∗p↔ p

Hebb∗-Negation [φ]HEBB∗¬ψ↔ ¬[φ]HEBB∗ψ

Hebb∗-Conjunction [φ]HEBB∗(ψ ∧ θ) ↔ [φ]HEBB∗ψ ∧ [φ]HEBB∗θ

Hebb∗-Diamond [φ]HEBB∗◇ψ↔◇[φ]HEBB∗ψ

Hebb∗-Closure [φ]HEBB∗⟨C⟩ψ↔
⟨C⟩([φ]HEBB∗ψ ∨ (⟨C⟩φ ∧◇(⟨C⟩φ ∧ ⟨C⟩[φ]HEBB∗ψ)))

Note: We didn’t define◇ for neural networks; here are its semantics:
N,w ⊧ ◇φ iff there is an E-path from some u ∈ JφK tow.

25 / 27

REDUCTION LAWS FOR HEBB∗

The following formulas are valid over neural network models:

Hebb∗-Propositions [φ]HEBB∗p↔ p

Hebb∗-Negation [φ]HEBB∗¬ψ↔ ¬[φ]HEBB∗ψ

Hebb∗-Conjunction [φ]HEBB∗(ψ ∧ θ) ↔ [φ]HEBB∗ψ ∧ [φ]HEBB∗θ

Hebb∗-Diamond [φ]HEBB∗◇ψ↔◇[φ]HEBB∗ψ

Hebb∗-Closure [φ]HEBB∗⟨C⟩ψ↔
⟨C⟩([φ]HEBB∗ψ ∨ (⟨C⟩φ ∧◇(⟨C⟩φ ∧ ⟨C⟩[φ]HEBB∗ψ)))

Note: We didn’t define◇ for neural networks; here are its semantics:
N,w ⊧ ◇φ iff there is an E-path from some u ∈ JφK tow.

25 / 27

REDUCTION LAWS FOR HEBB∗

The following formulas are valid over neural network models:

Hebb∗-Propositions [φ]HEBB∗p↔ p

Hebb∗-Negation [φ]HEBB∗¬ψ↔ ¬[φ]HEBB∗ψ

Hebb∗-Conjunction [φ]HEBB∗(ψ ∧ θ) ↔ [φ]HEBB∗ψ ∧ [φ]HEBB∗θ

Hebb∗-Diamond [φ]HEBB∗◇ψ↔◇[φ]HEBB∗ψ

Hebb∗-Closure [φ]HEBB∗⟨C⟩ψ↔
⟨C⟩([φ]HEBB∗ψ ∨ (⟨C⟩φ ∧◇(⟨C⟩φ ∧ ⟨C⟩[φ]HEBB∗ψ)))

Note: We didn’t define◇ for neural networks; here are its semantics:
N,w ⊧ ◇φ iff there is an E-path from some u ∈ JφK tow.

25 / 27

REDUCTION LAWS FOR HEBB∗

The following formulas are valid over neural network models:

Hebb∗-Propositions [φ]HEBB∗p↔ p

Hebb∗-Negation [φ]HEBB∗¬ψ↔ ¬[φ]HEBB∗ψ

Hebb∗-Conjunction [φ]HEBB∗(ψ ∧ θ) ↔ [φ]HEBB∗ψ ∧ [φ]HEBB∗θ

Hebb∗-Diamond [φ]HEBB∗◇ψ↔◇[φ]HEBB∗ψ

Hebb∗-Closure [φ]HEBB∗⟨C⟩ψ↔
⟨C⟩([φ]HEBB∗ψ ∨ (⟨C⟩φ ∧◇(⟨C⟩φ ∧ ⟨C⟩[φ]HEBB∗ψ)))

Note: We didn’t define◇ for neural networks; here are its semantics:
N,w ⊧ ◇φ iff there is an E-path from some u ∈ JφK tow.

25 / 27

REDUCTION LAWS FOR HEBB∗

The following formulas are valid over neural network models:

Hebb∗-Propositions [φ]HEBB∗p↔ p

Hebb∗-Negation [φ]HEBB∗¬ψ↔ ¬[φ]HEBB∗ψ

Hebb∗-Conjunction [φ]HEBB∗(ψ ∧ θ) ↔ [φ]HEBB∗ψ ∧ [φ]HEBB∗θ

Hebb∗-Diamond [φ]HEBB∗◇ψ↔◇[φ]HEBB∗ψ

Hebb∗-Closure [φ]HEBB∗⟨C⟩ψ↔
⟨C⟩([φ]HEBB∗ψ ∨ (⟨C⟩φ ∧◇(⟨C⟩φ ∧ ⟨C⟩[φ]HEBB∗ψ)))

Note: We didn’t define◇ for neural networks; here are its semantics:
N,w ⊧ ◇φ iff there is an E-path from some u ∈ JφK tow.

25 / 27

REDUCTION LAWS FOR HEBB∗

The following formulas are valid over neural network models:

Hebb∗-Propositions [φ]HEBB∗p↔ p

Hebb∗-Negation [φ]HEBB∗¬ψ↔ ¬[φ]HEBB∗ψ

Hebb∗-Conjunction [φ]HEBB∗(ψ ∧ θ) ↔ [φ]HEBB∗ψ ∧ [φ]HEBB∗θ

Hebb∗-Diamond [φ]HEBB∗◇ψ↔◇[φ]HEBB∗ψ

Hebb∗-Closure [φ]HEBB∗⟨C⟩ψ↔
⟨C⟩([φ]HEBB∗ψ ∨ (⟨C⟩φ ∧◇(⟨C⟩φ ∧ ⟨C⟩[φ]HEBB∗ψ)))

Note: We didn’t define◇ for neural networks; here are its semantics:
N,w ⊧ ◇φ iff there is an E-path from some u ∈ JφK tow.

25 / 27

REDUCTION LAWS FOR HEBB*: INTUITION

Let's look at this last law:

Hebb*-Closure. [']Hebb?hCi $

hCi([']Hebb? _ (hCi'^�(hCi'^ hCi[']Hebb?)))

What does it mean? Why does it hold?

Again, look at what this means for the propositional case:

[p]Hebb?hCiq$hCi(q _ (hCip^�(hCip^ hCiq)))

REDUCTION LAWS FOR HEBB*: INTUITION

Let's look at this last law:

Hebb*-Closure. [']Hebb?hCi $

hCi([']Hebb? _ (hCi'^�(hCi'^ hCi[']Hebb?)))

What does it mean? Why does it hold?

Again, look at what this means for the propositional case:

[p]Hebb?hCiq$hCi(q _ (hCip^�(hCip^ hCiq)))

REDUCTION LAWS FOR HEBB*: INTUITION

Let's look at this last law:

Hebb*-Closure. [']Hebb?hCi $

hCi([']Hebb? _ (hCi'^�(hCi'^ hCi[']Hebb?)))

What does it mean? Why does it hold?

Again, look at what this means for the propositional case:

[p]Hebb?hCiq$hCi(q _ (hCip^�(hCip^ hCiq)))

REDUCTION LAWS FOR HEBB*: INTUITION

[p]Hebb?hCiq$hCi(q _ (hCip^�(hCip^ hCiq)))

� This encodes in our logic a complete description of the effect Hebb?

has on the closure Clos. This is the description:

ClosHebb?(N ;JpK)(JqK)=Clos(JqK[(Clos(JpK)\Reach(Clos(JpK)\Clos(JqK))))

REDUCTION LAWS FOR HEBB*: INTUITION

[p]Hebb?hCiq$hCi(q _ (hCip^�(hCip^ hCiq)))

� This encodes in our logic a complete description of the effect Hebb?

has on the closure Clos. This is the description:

ClosHebb?(N ;JpK)(JqK)=Clos(JqK[(Clos(JpK)\Reach(Clos(JpK)\Clos(JqK))))

REDUCTION LAWS FOR HEBB*: INTUITION

[p]Hebb?hCiq$hCi(q _ (hCip^�(hCip^ hCiq)))

� This encodes in our logic a complete description of the effect Hebb?

has on the closure Clos. This is the description:

ClosHebb?(N ;JpK)(JqK)=Clos(JqK[(Clos(JpK)\Reach(Clos(JpK)\Clos(JqK))))

REDUCTION LAWS FOR HEBB*: INTUITION

[p]Hebb?hCiq$hCi(q _ (hCip^�(hCip^ hCiq)))

� This encodes in our logic a complete description of the effect Hebb?

has on the closure Clos. This is the description:

ClosHebb?(N ;JpK)(JqK)=Clos(JqK[(Clos(JpK)\Reach(Clos(JpK)\Clos(JqK))))

REDUCTION LAWS FOR HEBB*: INTUITION

[p]Hebb?hCiq$hCi(q _ (hCip^�(hCip^ hCiq)))

� This encodes in our logic a complete description of the effect Hebb?

has on the closure Clos. This is the description:

ClosHebb?(N ;JpK)(JqK)=Clos(JqK[(Clos(JpK)\Reach(Clos(JpK)\Clos(JqK))))

REDUCTION LAWS FOR HEBB*: INTUITION

[p]Hebb?hCiq$hCi(q _ (hCip^�(hCip^ hCiq)))

� This encodes in our logic a complete description of the effect Hebb?

has on the closure Clos. This is the description:

ClosHebb?(N ;JpK)(JqK)=Clos(JqK[(Clos(JpK)\Reach(Clos(JpK)\Clos(JqK))))

REDUCTION LAWS FOR HEBB*: INTUITION

[p]Hebb?hCiq$hCi(q _ (hCip^�(hCip^ hCiq)))

� This encodes in our logic a complete description of the effect Hebb?

has on the closure Clos. This is the description:

ClosHebb?(N ;JpK)(JqK)=Clos(JqK[(Clos(JpK)\Reach(Clos(JpK)\Clos(JqK))))

TO LEARN MORE CHECK OUT...

(a) Neural Network
Models of Conditionals:
An Introduction by
Leitgeb

(b) Reduction Axioms
for Iterated Hebbian
Learning by Schultz
Kisby, Blanco, & Moss

(c) Naturally
Intelligent Systems by
Caudill & Butler

Banner images are Penguins (1895) and Black Guillemot, Puffin, . . . (1932) by Louis Agassiz Fuertes. Watercolor. Backpropagation

figure and video are by 3Blue1Brown, https://www.3blue1brown.com/lessons/gradient-descent
26 / 27

https://www.3blue1brown.com/lessons/gradient-descent

END OF LECTURE 3

Thank you!

27 / 27

