COMPUTATIONAL LEARNING IN DYNAMIC LOGICS

DAY 3: UPDATES ON NEURAL NETWORKS

Nina Gierasimczuk and Caleb Schultz Kisby

@NASSLLI, June 2025

Course Homepage:

https://sites.google.com/view/nasslli25-learning-in-del

PLAN FOR TODAY

Overview of Neural Networks

2 A Logic for Neural Network Inference

3 Neural Network Update in Dynamic Logic

PLAN FOR TODAY

Overview of Neural Networks

2 A Logic for Neural Network Inference

3 Neural Network Update in Dynamic Logic

- A neural network is just $\mathcal{N} = (N, E, W, A)$
 - neurons, edges, weights, activation function
- Neurons are successively activated by their predecessors:

- A neural network is just $\mathcal{N} = (N, E, W, A)$
 - neurons, edges, weights, activation function
- Neurons are successively activated by their predecessors:

- A neural network is just $\mathcal{N} = (N, E, W, A)$
 - neurons, edges, weights, activation function
- Neurons are successively activated by their predecessors:

- A neural network is just $\mathcal{N} = (N, E, W, A)$
 - neurons, edges, weights, activation function
- Neurons are successively activated by their predecessors:

- A neural network is just $\mathcal{N} = (N, E, W, A)$
 - neurons, edges, weights, activation function
- Neurons are successively activated by their predecessors:

- A neural network is just $\mathcal{N} = (N, E, W, A)$
 - neurons, edges, weights, activation function
- Neurons are successively activated by their predecessors:

- A neural network is just $\mathcal{N} = (N, E, W, A)$
 - neurons, edges, weights, activation function
- Neurons are successively activated by their predecessors:

- A neural network is just $\mathcal{N} = (N, E, W, A)$
 - neurons, edges, weights, activation function
- Neurons are successively activated by their predecessors:

- A neural network is just $\mathcal{N} = (N, E, W, A)$
 - neurons, edges, weights, activation function
- Neurons are successively activated by their predecessors:

- A neural network is just $\mathcal{N} = (N, E, W, A)$
 - neurons, edges, weights, activation function
- Neurons are successively activated by their predecessors:

(BINARY) ARTIFICIAL NEURAL NETWORKS

- We take the activation function A to be a binary step function
- This is a useful abstraction for connecting nets with logic, formal languages, and and automata
- The net's activation patterns are just sets of neurons.

(BINARY) ARTIFICIAL NEURAL NETWORKS

- We take the activation function A to be a binary step function
- This is a useful abstraction for connecting nets with logic, formal languages, and and automata
- The net's activation patterns are just sets of neurons.

(BINARY) ARTIFICIAL NEURAL NETWORKS

- We take the activation function A to be a binary step function
- This is a useful abstraction for connecting nets with logic, formal languages, and and automata
- The net's activation patterns are just sets of neurons.

PLAN FOR TODAY

1 Overview of Neural Networks

A Logic for Neural Network Inference

3 Neural Network Update in Dynamic Logic

Definition (Language of Epistemic Logic)

Take a countable set of propositions PROP.

$$\phi := \top \left| \begin{array}{c|c} p & \neg \phi & \phi \wedge \phi & \mathbf{A}\phi \end{array} \right| \langle \mathbf{C} \rangle \phi$$

for all $p \in PROP$. The usual abbreviations are \vee , \rightarrow , and **C** (dual to \langle **C** \rangle)

Definition (Language of Epistemic Logic)

Take a countable set of propositions PROP.

$$\varphi := \top \mid p \mid \neg \varphi \mid \varphi \land \varphi \mid \mathbf{A}\varphi \mid \langle \mathbf{C} \rangle \varphi$$

for all $p \in PROP$. The usual abbreviations are \vee , \rightarrow , and **C** (dual to \langle **C** \rangle)

Notice that we're giving the semantics in terms of the ⋄-variant ⟨C⟩

Definition (Language of Epistemic Logic)

Take a countable set of propositions Prop.

$$\varphi := \top \mid p \mid \neg \varphi \mid \varphi \wedge \varphi \mid \mathbf{A}\varphi \mid \langle \mathbf{C} \rangle \varphi$$

for all $p \in PROP$. The usual abbreviations are \vee , \rightarrow , and **C** (dual to \langle **C** \rangle)

- Notice that we're giving the semantics in terms of the ⋄-variant ⟨C⟩
- Just like before, we will interpret $\langle \mathbf{C} \rangle \varphi$ in a <u>model</u>, at a <u>world</u>.

Definition (Language of Epistemic Logic)

Take a countable set of propositions Prop.

$$\varphi := \top \mid p \mid \neg \varphi \mid \varphi \land \varphi \mid \mathbf{A}\varphi \mid \langle \mathbf{C} \rangle \varphi$$

for all $p \in PROP$. The usual abbreviations are \vee , \rightarrow , and **C** (dual to \langle **C** \rangle)

- Notice that we're giving the semantics in terms of the \lozenge -variant $\langle \mathbf{C} \rangle$
- Just like before, we will interpret $\langle \mathbf{C} \rangle \varphi$ in a model, at a world.
- The intended interpretation:
 - $\langle \mathbf{C} \rangle \varphi$ holds in a net, at a neuron w if w is activated by input φ .

• A binary neural network is just $\mathcal{N} = (N, E, W, A)$

- A binary neural network is just $\mathcal{N} = (N, E, W, A)$
- Each choice of E, W, A specifies a transition function from one activation pattern $S \subseteq N$ to the next

- A binary neural network is just $\mathcal{N} = (N, E, W, A)$
- Each choice of E, W, A specifies a transition function from one activation pattern S ⊆ N to the next
- Given initial state $S_0, F_{S_0} : \wp(N) \to \wp(N)$ is given by

$$F_{S_0}(S) = S_0 \cup \{ w \mid A(\sum_{u \in preds(w)} W(u, w) \cdot \chi_S(u)) = 1 \}$$

"the set of all nodes w activated by their immediate predecessors u"

- A binary neural network is just $\mathcal{N} = (N, E, W, A)$
- Each choice of E, W, A specifies a transition function from one activation pattern S ⊆ N to the next
- Given initial state $S_0, F_{S_0} : \wp(N) \rightarrow \wp(N)$ is given by

$$F_{S_0}(S) = S_0 \cup \{ w \mid A(\sum_{u \in \mathsf{preds}(w)} W(u, w) \cdot \chi_S(u)) = 1 \}$$

"the set of all nodes w activated by their immediate predecessors u"

• $\chi_S(u) = 1$ iff $u \in S$ indicates whether u was activated previously

- Notice that the activated nodes could have oscillatory behavior!
- But we only want nets that have a unique "answer" for each input

- Notice that the activated nodes could have oscillatory behavior!
- But we only want nets that have a unique "answer" for each input

- Notice that the activated nodes could have oscillatory behavior!
- But we only want nets that have a unique "answer" for each input

- Notice that the activated nodes could have oscillatory behavior!
- But we only want nets that have a unique "answer" for each input

- Notice that the activated nodes could have oscillatory behavior!
- But we only want nets that have a unique "answer" for each input

- Notice that the activated nodes could have oscillatory behavior!
- But we only want nets that have a unique "answer" for each input

- Notice that the activated nodes could have oscillatory behavior!
- But we only want nets that have a unique "answer" for each input

- Notice that the activated nodes could have oscillatory behavior!
- But we only want nets that have a unique "answer" for each input

- Notice that the activated nodes could have oscillatory behavior!
- But we only want nets that have a unique "answer" for each input

- Notice that the activated nodes could have oscillatory behavior!
- But we only want nets that have a unique "answer" for each input

- Notice that the activated nodes could have oscillatory behavior!
- But we only want nets that have a unique "answer" for each input

SEMANTICS: NEURAL NETWORK CLOSURE OPERATOR

Postulate

We assume for all $S_0 \subseteq N$, F_{S_0} repeatedly applied to S_0 ,

$$S_0, F_{S_0}(S_0), F_{S_0}(F_{S_0}(S_0)), \dots, F_{S_0}^k(S_0), \dots$$

eventually stabilizes to a <u>unique</u> activation pattern.

SEMANTICS: NEURAL NETWORK CLOSURE OPERATOR

Postulate

We assume for all $S_0 \subseteq N$, F_{S_0} repeatedly applied to S_0 ,

$$S_0, F_{S_0}(S_0), F_{S_0}(F_{S_0}(S_0)), \dots, F_{S_0}^k(S_0), \dots$$

eventually stabilizes to a <u>unique</u> activation pattern.

Definition

Let Clos : $\wp(N) \to \wp(N)$ be the function that produces this stable activation pattern.

SEMANTICS: FORMAL DEFINITION

Definition (Neural Network Semantics)

Given a binary neural network model $\mathcal{N} = (N, E, W, A, V)$, where $V : Prop \rightarrow \wp(N)$, and a neuron ("world") $w \in N$:

$$\mathcal{N}, w \vDash p$$
 iff $w \in V(p)$ for each $p \in Prop$
 $\mathcal{N}, w \vDash \neg \varphi$ iff not $\mathcal{N}, w \vDash \varphi$
 $\mathcal{N}, w \vDash \varphi \land \psi$ iff $\mathcal{N}, w \vDash \varphi$ and $\mathcal{N}, w \vDash \psi$
 $\mathcal{N}, w \vDash A\varphi$ iff for all $w \in N$ whatsoever, $\mathcal{N}, w \vDash \varphi$
 $\mathcal{N}, w \vDash \langle \mathbf{C} \rangle \varphi$ iff $w \in Clos(\llbracket \varphi \rrbracket)^{\mathbb{C}}$

and dually:

 $\mathcal{N}, w \vDash \mathbf{C} \varphi$ iff $w \in (Clos(\llbracket \varphi \rrbracket)^{\mathbb{C}})^{\mathbb{C}}$

where $[\![\phi]\!] = \{u \mid \mathcal{N}, u \models \phi\}$ is the set of worlds where ϕ holds (the set of neurons that are active for ϕ)

EXPRESSING NEURAL NETWORK INFERENCE

The C modality gives information about the net's answer to an input

The net satisfies $\mathbf{A}(\mathbf{C}(\varphi) \to \psi)$ iff The net satisfies $\mathbf{A}(\psi \to \langle \mathbf{C} \rangle(\varphi))$

EXPRESSING NEURAL NETWORK INFERENCE

The C modality gives information about the net's answer to an input

The net satisfies
$$\mathbf{A}(\mathbf{C}(\phi) \to \psi)$$
 iff The net satisfies $\mathbf{A}(\psi \to \langle \mathbf{C} \rangle(\phi))$ iff $\mathsf{Clos}(\llbracket \phi \rrbracket) \supseteq \llbracket \psi \rrbracket$

EXPRESSING NEURAL NETWORK INFERENCE

The C modality gives information about the net's answer to an input

The net satisfies
$$\mathbf{A}(\mathbf{C}(\phi) \to \psi)$$
 iff The net satisfies $\mathbf{A}(\psi \to \langle \mathbf{C} \rangle (\phi))$ iff $\mathsf{Clos}(\llbracket \phi \rrbracket) \supseteq \llbracket \psi \rrbracket$ iff **The net classifies** ϕ **as** ψ

EXAMPLE: EXPRESSING NEURAL NETWORK INFERENCE

In the exercises, we will ask you will to show

$$\mathcal{N} \not\models \textbf{A}(\textbf{C}(\texttt{PENGUIN}) \rightarrow \texttt{FLIES})$$

EXAMPLE: EXPRESSING NEURAL NETWORK INFERENCE

In the exercises, we will ask you will to show

$$\mathcal{N} \not\models \textbf{A}(\textbf{C}(\texttt{PENGUIN}) \rightarrow \texttt{FLIES})$$

This means the net does not classify penguins as flying

EXAMPLE: EXPRESSING NEURAL NETWORK INFERENCE

In the exercises, we will ask you will to show

$$\mathcal{N} \not\models \mathbf{A}(\mathbf{C}(\text{PENGUIN}) \rightarrow \text{FLIES})$$

- This means the net does not classify penguins as flying
- Yet, if we take $[BIRD] = \{a, b, c\},$

$$\mathcal{N} \vDash \mathbf{A}(\mathbf{C}(\mathsf{BIRD}) \to \mathsf{FLIES})$$

```
The net satisfies \mathbf{A}(\mathbf{C}(\phi) \to \psi) iff The net satisfies \mathbf{A}(\psi \to \langle \mathbf{C} \rangle (\phi)) iff \mathsf{Clos}(\llbracket \phi \rrbracket) \supseteq \llbracket \psi \rrbracket iff The net classifies \phi as \psi
```

What does this remind you of?

```
The net satisfies \mathbf{A}(\mathbf{C}(\phi) \to \psi) iff The net satisfies \mathbf{A}(\psi \to \langle \mathbf{C} \rangle (\phi)) iff \mathsf{Clos}(\llbracket \phi \rrbracket) \supseteq \llbracket \psi \rrbracket iff The net classifies \phi as \psi
```

- What does this remind you of?
 - best_≤($\llbracket \phi \rrbracket$) ⊆ $\llbracket \psi \rrbracket$

```
The net satisfies \mathbf{A}(\mathbf{C}(\phi) \to \psi) iff The net satisfies \mathbf{A}(\psi \to \langle \mathbf{C} \rangle (\phi)) iff \mathsf{Clos}(\llbracket \phi \rrbracket) \supseteq \llbracket \psi \rrbracket iff The net classifies \phi as \psi
```

- What does this remind you of?
 - $\ best_{\leq}(\llbracket \phi \rrbracket) \subseteq \llbracket \psi \rrbracket$
 - $\mathbf{A}(\mathbf{C}(\phi) \to \psi)$, taken as a conditional, behaves exactly like $B^{\phi}\psi$

```
The net satisfies \mathbf{A}(\mathbf{C}(\phi) \to \psi) iff The net satisfies \mathbf{A}(\psi \to \langle \mathbf{C} \rangle (\phi)) iff \mathsf{Clos}(\llbracket \phi \rrbracket) \supseteq \llbracket \psi \rrbracket iff The net classifies \phi as \psi
```

- What does this remind you of?
 - $\ best_{\leq}(\llbracket \phi \rrbracket) \subseteq \llbracket \psi \rrbracket$
 - $\mathbf{A}(\mathbf{C}(\phi) \to \psi)$, taken as a conditional, behaves exactly like $B^{\phi}\psi$
 - You can think of this as the net's conditional belief

```
The net satisfies \mathbf{A}(\mathbf{C}(\phi) \to \psi) iff The net satisfies \mathbf{A}(\psi \to \langle \mathbf{C} \rangle (\phi)) iff \mathsf{Clos}(\llbracket \phi \rrbracket) \supseteq \llbracket \psi \rrbracket iff The net classifies \phi as \psi
```

- What does this remind you of?
 - $\ best_{\leq}(\llbracket \phi \rrbracket) \subseteq \llbracket \psi \rrbracket$
 - $\mathbf{A}(\mathbf{C}(\phi) \to \psi)$, taken as a conditional, behaves exactly like $B^{\phi}\psi$
 - You can think of this as the net's conditional belief
- Interpreting C on its own is less clear...

PLAN FOR TODAY

1 Overview of Neural Networks

2 A Logic for Neural Network Inference

3 Neural Network Update in Dynamic Logic

UPDATES ON NEURAL NETWORKS

Unsupervised Updates

- The network learns from data that is **unlabeled** (no expected answer or classification)
- Each update softly increases the net's preference for the input
- Hebb's rule, Oja's rule, & competitive learning rule

Supervised Updates

- The network learns from labeled data with an expected answer
- Each update softly increases the net's accuracy on a function
- Backpropagation rule & delta learning rule

UPDATES ON NEURAL NETWORKS

Unsupervised Updates

- The network learns from data that is **unlabeled** (no expected answer or classification)
- Each update softly increases the net's preference for the input
- Hebb's rule, Oja's rule, & competitive learning rule

Supervised Updates

- The network learns from labeled data with an expected answer
- Each update softly increases the net's accuracy on a function
- Backpropagation rule & delta learning rule

BACKPROPAGATION RULE

- Backpropagation is the most widely used neural network update rule
- Main idea: Backprop implements gradient descent on a net's weights

• Given an input \vec{x} with label y, the neural network gives its answer y' to \vec{x} , and each weight of the net is adjusted according to its contribution to the error (difference between y' and y).

BACKPROPAGATION RULE

https://www.youtube.com/watch?v=cANqroNVdl8

- What if we could have a complete characterization of Backprop, like we did for public announcement, LEX, and MINI?
 - That would be wonderful!

- What if we could have a complete characterization of Backprop, like we did for public announcement, LEX, and MINI?
 - That would be wonderful!
 - Unfortunately, this is still an open problem

- What if we could have a complete characterization of Backprop, like we did for public announcement, LEX, and MINI?
 - That would be wonderful!
 - Unfortunately, this is still an open problem
- Proof of concept: Can we do this for any neural network update at all?

- What if we could have a complete characterization of Backprop, like we did for public announcement, LEX, and MINI?
 - That would be wonderful!
 - Unfortunately, this is still an open problem
- Proof of concept: Can we do this for any neural network update at all?
 - Let's consider the simplest possible one: Hebbian learning

HEBBIAN UPDATE RULE

Neurons that fire together wire together

HEBBIAN UPDATE RULE

Neurons that fire together wire together

- Each edge involved in the activation is "bumped up" by a fixed learning rate $\eta \geq 0$

HEBBIAN UPDATE RULE

Neurons that fire together wire together

- Each edge involved in the activation is "bumped up" by a fixed learning rate $\eta \geq 0$
- Formally: $\mathsf{HEBB}(\mathcal{N}, \llbracket \varphi \rrbracket) = (N, E, W', A)$, where $W'(u, w) = W(u, w) + \eta \cdot \chi_{\mathsf{Clos}(\llbracket \varphi \rrbracket)}(u) \cdot \chi_{\mathsf{Clos}(\llbracket \varphi \rrbracket)}(w)$

• If nobody ever told you that penguins don't fly, how could you come to believe they don't?

- If nobody ever told you that penguins don't fly, how could you come to believe they don't?
 - Observe animals with similar features that don't fly

- If nobody ever told you that penguins don't fly, how could you come to believe they don't?
 - Observe animals with similar features that don't fly
- Now imagine you believe penguins don't fly. What could cause you to change your mind?

- If nobody ever told you that penguins don't fly, how could you come to believe they don't?
 - Observe animals with similar features that **don't** fly
- Now imagine you believe penguins don't fly. What could cause you to change your mind?
 - Observe animals with similar features that do fly

- If nobody ever told you that penguins don't fly, how could you come to believe they don't?
 - Observe animals with similar features that **don't** fly
- Now imagine you believe penguins don't fly. What could cause you to change your mind?
 - Observe animals with similar features that do fly

 This kind of Hebbian update is unstable — weights will continue to increase until they saturate

- This kind of Hebbian update is unstable weights will continue to increase until they saturate
 - It's possible to prevent this by using **Oja's rule** or similar

- This kind of Hebbian update is unstable weights will continue to increase until they saturate
 - It's possible to prevent this by using Oja's rule or similar
 - Key idea: All weights must sum to 1
 - "use it or lose it"

- This kind of Hebbian update is unstable weights will continue to increase until they saturate
 - It's possible to prevent this by using Oja's rule or similar
 - Key idea: All weights must sum to 1
 - "use it or lose it"
 - It's an open problem to completely characterize stable Hebbian update rules

- This kind of Hebbian update is unstable weights will continue to increase until they saturate
 - It's possible to prevent this by using Oja's rule or similar
 - Key idea: All weights must sum to 1
 - "use it or lose it"
 - It's an open problem to completely characterize stable Hebbian update rules
- НЕВВ is more gradual than Lex or МІНІ

ADDITIONAL COMMENTS ABOUT HEBBIAN UPDATE

- This kind of Hebbian update is unstable weights will continue to increase until they saturate
 - It's possible to prevent this by using Oja's rule or similar
 - Key idea: All weights must sum to 1
 - "use it or lose it"
 - It's an open problem to completely characterize stable Hebbian update rules
- Невв is more gradual than Lex or Мімі
 - The result of Lex and MINI is a change in belief

ADDITIONAL COMMENTS ABOUT HEBBIAN UPDATE

- This kind of Hebbian update is unstable weights will continue to increase until they saturate
 - It's possible to prevent this by using Oja's rule or similar
 - Key idea: All weights must sum to 1
 - "use it or lose it"
 - It's an open problem to completely characterize stable Hebbian update rules
- Невв is more gradual than Lex or Мімі
 - The result of Lex and MINI is a change in belief
 - Hebb gently nudges us in the direction of a belief

HEBB*: "FIXED-POINT" HEBBIAN UPDATE

• If we repeatedly apply $HEBB(\mathcal{N},S)$, eventually these weights will saturate (they will not inhibit any incoming activations)

HEBB*: "FIXED-POINT" HEBBIAN UPDATE

- If we repeatedly apply HEBB(N, S), eventually these weights will saturate (they will not inhibit any incoming activations)
- Let iter be the number of iterations needed to reach this fixed point

HEBB*: "FIXED-POINT" HEBBIAN UPDATE

- If we repeatedly apply HEBB(N, S), eventually these weights will saturate (they will not inhibit any incoming activations)
- Let iter be the number of iterations needed to reach this fixed point

• Let
$$\mathsf{HEBB}^*(\mathcal{N},S) = (N,E,W',A)$$
, where
$$W'(u,w) = W(u,w) + \mathsf{iter} \cdot \eta \cdot \chi_{\mathsf{Clos}(\llbracket \phi \rrbracket)}(u) \cdot \chi_{\mathsf{Clos}(\llbracket \phi \rrbracket)}(w)$$

NEURAL NETWORK UPDATES IN DYNAMIC LOGIC

 We can use the DEL trick to give semantics using neural network updates

Definition (Neural Network Semantics)

Let $\mathbb N$ be a binary neural network model, $w \in \mathbb N$, and let $\mathcal U: \mathbf{Net} \to \mathcal L \to \mathbf{Net}$ be any unsupervised update:

$$\mathcal{N}, w \models [\varphi] \psi$$
 iff $\mathsf{Update}(N, \llbracket \varphi \rrbracket), w \models \psi$

For Hebbian updates in particular:

$$\begin{split} \mathcal{N}, w &\models \big[\phi\big]_{\mathsf{HEBB}} \psi \quad \text{iff} \quad \mathsf{HEBB}\big(\mathcal{N}, \big[\![\phi]\!]\big), w &\models \psi \\ \mathcal{N}, w &\models \big[\phi\big]_{\mathsf{HEBB}^*} \psi \quad \text{iff} \quad \mathsf{HEBB}^*\big(\mathcal{N}, \big[\![\phi]\!]\big), w &\models \psi \end{split}$$

The following formulas are valid over neural network models:

The following formulas are valid over neural network models:

Hebb*-Propositions $[\phi]_{\mathsf{HEBB}}*p \leftrightarrow p$

The following formulas are valid over neural network models:

Hebb*-Propositions $[\phi]_{\mathsf{HEBB}}*p \leftrightarrow p$

 $\textbf{Hebb*-Negation} \, [\phi]_{\textbf{HEBB*}} \neg \psi \leftrightarrow \neg [\phi]_{\textbf{HEBB*}} \psi$

The following formulas are valid over neural network models:

Hebb*-Propositions $[\phi]_{\mathsf{HEBB}}*p \leftrightarrow p$

 $\textbf{Hebb*-Negation} \ [\phi]_{\text{HEBB*}} \neg \psi \leftrightarrow \neg [\phi]_{\text{HEBB*}} \psi$

 $\textbf{Hebb*-Conjunction} \ [\phi]_{\textbf{HEBB}*} (\psi \wedge \theta) \leftrightarrow [\phi]_{\textbf{HEBB}*} \psi \wedge [\phi]_{\textbf{HEBB}*} \theta$

The following formulas are valid over neural network models:

Hebb*-Propositions
$$[\phi]_{\mathsf{HEBB}} p \leftrightarrow p$$

$$\textbf{Hebb*-Negation} \ [\phi]_{\text{HEBB}*} \neg \psi \leftrightarrow \neg [\phi]_{\text{HEBB}*} \psi$$

$$\textbf{Hebb*-Conjunction} \ [\phi]_{\textbf{HEBB}*} (\psi \wedge \theta) \leftrightarrow [\phi]_{\textbf{HEBB}*} \psi \wedge [\phi]_{\textbf{HEBB}*} \theta$$

$$\textbf{Hebb*-Diamond} \ [\phi]_{\textbf{HEBB*}} \diamondsuit \psi \leftrightarrow \diamondsuit [\phi]_{\textbf{HEBB*}} \psi$$

The following formulas are valid over neural network models:

$$\begin{split} & \text{Hebb*-Propositions} \, [\phi]_{\text{HEBB*}} p \leftrightarrow p \\ & \text{Hebb*-Negation} \, [\phi]_{\text{HEBB*}} \neg \psi \leftrightarrow \neg [\phi]_{\text{HEBB*}} \psi \\ & \text{Hebb*-Conjunction} \, [\phi]_{\text{HEBB*}} (\psi \wedge \theta) \leftrightarrow [\phi]_{\text{HEBB*}} \psi \wedge [\phi]_{\text{HEBB*}} \theta \\ & \text{Hebb*-Diamond} \, [\phi]_{\text{HEBB*}} \diamondsuit \psi \leftrightarrow \diamondsuit [\phi]_{\text{HEBB*}} \psi \\ & \text{Hebb*-Closure} \, [\phi]_{\text{HEBB*}} \langle \textbf{C} \rangle \psi \leftrightarrow \\ & \langle \textbf{C} \rangle ([\phi]_{\text{HEBB*}} \psi \vee (\langle \textbf{C} \rangle \phi \wedge \diamondsuit (\langle \textbf{C} \rangle \phi \wedge \langle \textbf{C} \rangle [\phi]_{\text{HEBB*}} \psi))) \end{split}$$

The following formulas are valid over neural network models:

Hebb*-Propositions
$$[\phi]_{\mathsf{HEBB}}*p \leftrightarrow p$$

$$\textbf{Hebb*-Negation} \ [\phi]_{\textbf{HEBB*}} \neg \psi \leftrightarrow \neg [\phi]_{\textbf{HEBB*}} \psi$$

$$\textbf{Hebb*-Conjunction} \ [\phi]_{\textbf{HEBB*}} (\psi \wedge \theta) \leftrightarrow [\phi]_{\textbf{HEBB*}} \psi \wedge [\phi]_{\textbf{HEBB*}} \theta$$

$$\textbf{Hebb*-Diamond} \ [\phi]_{\textbf{HEBB*}} \diamondsuit \psi \leftrightarrow \diamondsuit [\phi]_{\textbf{HEBB*}} \psi$$

Hebb*-Closure
$$[\varphi]_{\mathsf{HEBB}^*}(\mathsf{C})\psi \leftrightarrow (\mathsf{C})([\varphi]_{\mathsf{HEBB}^*}\psi \lor ((\mathsf{C})\varphi \land \diamondsuit((\mathsf{C})\varphi \land (\mathsf{C})[\varphi]_{\mathsf{HEBB}^*}\psi)))$$

Note: We didn't define \diamondsuit for neural networks; here are its semantics:

$$\mathcal{N}, w \models \Diamond \varphi$$
 iff there is an *E*-path from some $u \in \llbracket \varphi \rrbracket$ to w .

Let's look at this last law:

Hebb*-Closure.
$$[\varphi]_{\mathsf{Hebb}^{\star}}\langle \mathbf{C}\rangle\psi$$
 \leftrightarrow

$$\langle \mathbf{C} \rangle ([\varphi]_{\mathsf{Hebb}^{\star}} \psi \vee (\langle \mathbf{C} \rangle \varphi \wedge \diamond (\langle \mathbf{C} \rangle \varphi \wedge \langle \mathbf{C} \rangle [\varphi]_{\mathsf{Hebb}^{\star}} \psi)))$$

What does it mean? Why does it hold?

Let's look at this last law:

Hebb*-Closure.
$$[\varphi]_{\mathsf{Hebb}^{\star}}\langle \mathbf{C}\rangle\psi$$
 \leftrightarrow

$$\langle \mathbf{C} \rangle ([\varphi]_{\mathsf{Hebb}^\star} \psi \vee (\langle \mathbf{C} \rangle \varphi \wedge \diamond (\langle \mathbf{C} \rangle \varphi \wedge \langle \mathbf{C} \rangle [\varphi]_{\mathsf{Hebb}^\star} \psi)))$$

What does it mean? Why does it hold?

Again, look at what this means for the propositional case:

Let's look at this last law:

Hebb*-Closure.
$$[\varphi]_{\mathsf{Hebb}^{\star}}\langle \mathbf{C}\rangle\psi \leftrightarrow$$

$$\langle \mathbf{C} \rangle ([\varphi]_{\mathsf{Hebb}^\star} \psi \vee (\langle \mathbf{C} \rangle \varphi \wedge \diamond (\langle \mathbf{C} \rangle \varphi \wedge \langle \mathbf{C} \rangle [\varphi]_{\mathsf{Hebb}^\star} \psi)))$$

What does it mean? Why does it hold?

Again, look at what this means for the propositional case:

$$[p]_{\mathsf{Hebb}^{\star}}\langle \mathbf{C}\rangle q \leftrightarrow \langle \mathbf{C}\rangle (q \vee (\langle \mathbf{C}\rangle p \wedge \Diamond (\langle \mathbf{C}\rangle p \wedge \langle \mathbf{C}\rangle q)))$$

$$[p]_{\mathsf{Hebb}^{\star}}\langle \mathbf{C}\rangle q \leftrightarrow \langle \mathbf{C}\rangle (q \vee (\langle \mathbf{C}\rangle p \wedge \Diamond (\langle \mathbf{C}\rangle p \wedge \langle \mathbf{C}\rangle q)))$$

$$[p]_{\mathsf{Hebb}^{\star}}\langle \mathbf{C} \rangle q \leftrightarrow \langle \mathbf{C} \rangle (q \vee (\langle \mathbf{C} \rangle p \wedge \Diamond (\langle \mathbf{C} \rangle p \wedge \langle \mathbf{C} \rangle q)))$$

```
\mathsf{Clos}_{\mathsf{Hebb}^{\star}(\mathcal{N}, \llbracket p \rrbracket)}(\llbracket q \rrbracket) = \mathsf{Clos}(\llbracket q \rrbracket \cup (\mathsf{Clos}(\llbracket p \rrbracket) \cap \mathsf{Reach}(\mathsf{Clos}(\llbracket p \rrbracket) \cap \mathsf{Clos}(\llbracket q \rrbracket))))
```

$$[p]_{\mathsf{Hebb}^{\star}}\langle \mathbf{C} \rangle q \leftrightarrow \langle \mathbf{C} \rangle (q \vee (\langle \mathbf{C} \rangle p \wedge \Diamond (\langle \mathbf{C} \rangle p \wedge \langle \mathbf{C} \rangle q)))$$

$$\mathsf{Clos}_{\mathsf{Hebb}^{\star}(\mathcal{N}, \llbracket p \rrbracket)}(\llbracket q \rrbracket) = \mathsf{Clos}(\llbracket q \rrbracket \cup (\mathsf{Clos}(\llbracket p \rrbracket) \cap \mathsf{Reach}(\mathsf{Clos}(\llbracket p \rrbracket) \cap \mathsf{Clos}(\llbracket q \rrbracket))))$$

$$[p]_{\mathsf{Hebb}^{\star}}\langle \mathbf{C} \rangle q \leftrightarrow \langle \mathbf{C} \rangle (q \vee (\langle \mathbf{C} \rangle p \wedge \Diamond (\langle \mathbf{C} \rangle p \wedge \langle \mathbf{C} \rangle q)))$$

$$\mathsf{Clos}_{\mathsf{Hebb}^{\star}(\mathcal{N}, \llbracket p \rrbracket)}(\llbracket q \rrbracket) = \mathsf{Clos}(\llbracket q \rrbracket \cup (\mathsf{Clos}(\llbracket p \rrbracket) \cap \mathsf{Reach}(\mathsf{Clos}(\llbracket p \rrbracket) \cap \mathsf{Clos}(\llbracket q \rrbracket))))$$

$$[p]_{\mathsf{Hebb}^{\star}}\langle \mathbf{C} \rangle q \leftrightarrow \langle \mathbf{C} \rangle (q \vee (\langle \mathbf{C} \rangle p \wedge \Diamond (\langle \mathbf{C} \rangle p \wedge \langle \mathbf{C} \rangle q)))$$

$$\mathsf{Clos}_{\mathsf{Hebb}^{\star}(\mathcal{N}, \llbracket p \rrbracket)}(\llbracket q \rrbracket) = \mathsf{Clos}(\llbracket q \rrbracket \cup (\mathsf{Clos}(\llbracket p \rrbracket) \cap \mathsf{Reach}(\mathsf{Clos}(\llbracket p \rrbracket) \cap \mathsf{Clos}(\llbracket q \rrbracket))))$$

$$[p]_{\mathsf{Hebb}^{\star}}\langle \mathbf{C} \rangle q \leftrightarrow \langle \mathbf{C} \rangle (q \vee (\langle \mathbf{C} \rangle p \wedge \Diamond (\langle \mathbf{C} \rangle p \wedge \langle \mathbf{C} \rangle q)))$$

$$\mathsf{Clos}_{\mathsf{Hebb}^{\star}(\mathcal{N}, \llbracket p \rrbracket)}(\llbracket q \rrbracket) = \mathsf{Clos}(\llbracket q \rrbracket \cup (\mathsf{Clos}(\llbracket p \rrbracket) \cap \mathsf{Reach}(\mathsf{Clos}(\llbracket p \rrbracket) \cap \mathsf{Clos}(\llbracket q \rrbracket))))$$

$$[p]_{\mathsf{Hebb}^{\star}}\langle \mathbf{C} \rangle q \leftrightarrow \langle \mathbf{C} \rangle (q \vee (\langle \mathbf{C} \rangle p \wedge \Diamond (\langle \mathbf{C} \rangle p \wedge \langle \mathbf{C} \rangle q)))$$

$$\mathsf{Clos}_{\mathsf{Hebb}^{\star}(\mathcal{N}, \llbracket p \rrbracket)}(\llbracket q \rrbracket) = \mathsf{Clos}(\llbracket q \rrbracket \cup (\mathsf{Clos}(\llbracket p \rrbracket) \cap \mathsf{Reach}(\mathsf{Clos}(\llbracket p \rrbracket) \cap \mathsf{Clos}(\llbracket q \rrbracket))))$$

TO LEARN MORE CHECK OUT...

(a) Neural Network
Models of Conditionals:
An Introduction by
Leitgeb

(b) Reduction Axioms for Iterated Hebbian Learning by Schultz Kisby, Blanco, & Moss

(c) **Naturally Intelligent Systems** by
Caudill & Butler

