COMPUTATIONAL LEARNING IN DYNAMIC LOGICS DAY 4: ITERATED BELIEF REVISION AND LEARNABILITY

Nina Gierasimczuk and Caleb Schultz Kisby

@NASSLLI, June 2025

Course Homepage:

https://sites.google.com/view/nasslli25-learning-in-del

PLAN FOR TODAY

Learnability in Epistemic Spaces

2 Learning Power of Belief Revision Operators

PLAN FOR TODAY

Learnability in Epistemic Spaces

2 Learning Power of Belief Revision Operators

So far, we have only talked about updates that happen in a single step. What can we say about the **long-term behavior** of these updates?

So far, we have only talked about updates that happen in a single step. What can we say about the **long-term behavior** of these updates?

 Consider the belief revision policies from yesterday: announcement, Lex, and MINI.

So far, we have only talked about updates that happen in a single step. What can we say about the **long-term behavior** of these updates?

- Consider the belief revision policies from yesterday:
 announcement, Lex, and MINI.
- How good are they as learning methods, in the long-term?

So far, we have only talked about updates that happen in a single step. What can we say about the **long-term behavior** of these updates?

- Consider the belief revision policies from yesterday:
 announcement, Lex, and MINI.
- How good are they as learning methods, in the long-term?
- Under what conditions are they reliable?

So far, we have only talked about updates that happen in a single step. What can we say about the **long-term behavior** of these updates?

- Consider the belief revision policies from yesterday:
 announcement, Lex, and MINI.
- How good are they as learning methods, in the long-term?
- Under what conditions are they reliable?

The same tools we develop to answer these questions we can then use for:

So far, we have only talked about updates that happen in a single step. What can we say about the **long-term behavior** of these updates?

- Consider the belief revision policies from yesterday:
 announcement, Lex, and MINI.
- How good are they as learning methods, in the long-term?
- Under what conditions are they reliable?

The same tools we develop to answer these questions we can then use for:

a topological characterisation of learnability and solvability;

So far, we have only talked about updates that happen in a single step. What can we say about the **long-term behavior** of these updates?

- Consider the belief revision policies from yesterday:
 announcement, Lex, and MINI.
- How good are they as learning methods, in the long-term?
- Under what conditions are they reliable?

The same tools we develop to answer these questions we can then use for:

- a topological characterisation of learnability and solvability;
- a modal dynamic logic of learnability.

EPISTEMIC SPACES AND OBSERVABLES

Definition

An **epistemic space** is a pair S = (S, O) consisting of a state space S and a set of observables $O \subseteq P(S)$, both at most countable.

Definition

Let S = (S, O) be an epistemic space.

Definition

Let S = (S, O) be an epistemic space.

• A **data stream** is an infinite sequence $\vec{O} = (O_0, O_1, ...)$ of data from \circlearrowleft .

Definition

Let S = (S, O) be an epistemic space.

- A **data stream** is an infinite sequence $\vec{O} = (O_0, O_1, ...)$ of data from \odot .
- A **data sequence** is a finite initial segment of an \vec{O} ; such a finite sequence of length n+1 is denoted by $\vec{O}[n] = (O_0, \dots, O_n)$.

Definition

Let S = (S, O) be an epistemic space.

- A **data stream** is an infinite sequence $\vec{O} = (O_0, O_1, ...)$ of data from \circlearrowleft .
- A **data sequence** is a finite initial segment of an \vec{O} ; such a finite sequence of length n+1 is denoted by $\vec{O}[n] = (O_0, \dots, O_n)$.

Definition

Take $\mathbb{S} = (S, O)$ and $s \in S$. A data stream \vec{O} is:

• **sound with respect to** *s* iff every element listed in \vec{O} is true in *s*.

Definition

Let S = (S, O) be an epistemic space.

- A **data stream** is an infinite sequence $\vec{O} = (O_0, O_1, ...)$ of data from \circlearrowleft .
- A **data sequence** is a finite initial segment of an \vec{O} ; such a finite sequence of length n+1 is denoted by $\vec{O}[n] = (O_0, \dots, O_n)$.

Definition

Take S = (S, O) and $s \in S$. A data stream \vec{O} is:

- **sound with respect to** *s* iff every element listed in \tilde{O} is true in *s*.
- **complete with respect to** s iff every observable true in s is listed in \vec{O} .

Definition

Let S = (S, O) be an epistemic space.

- A **data stream** is an infinite sequence $\vec{O} = (O_0, O_1, ...)$ of data from \circlearrowleft .
- A **data sequence** is a finite initial segment of an \vec{O} ; such a finite sequence of length n + 1 is denoted by $\vec{O}[n] = (O_0, \dots, O_n)$.

Definition

Take $\mathbb{S} = (S, O)$ and $s \in S$. A data stream \vec{O} is:

- **sound with respect to** *s* iff every element listed in \vec{O} is true in *s*.
- **complete with respect to** s iff every observable true in s is listed in \vec{O} .

We assume that data streams are sound and complete.

LEARNING: LEARNERS AND CONJECTURES

Definition

Let $\mathbb{S} = (S, O)$ be an epistemic space and let $O_0, \dots, O_n \in \mathbb{O}$.

A **learner** is a function L that on the input of $\mathbb S$ and data sequence (O_0,\ldots,O_n) outputs some set of worlds

$$L(\mathbb{S},(O_0,\ldots,O_n))\subseteq S$$

We call this the learner's **conjecture**.

AN INTUITION ABOUT SEPARABILITY BY OBSERVATIONS

(a) t and u are not separable

(b) weakly separated space T0

(c) strongly separated space T1

LEARNABILITY

Definition

 $\mathbb{S} = (S, O)$ is **learnable by** *L* if for every state $s \in S$

LEARNABILITY

Definition

 $\mathbb{S} = (S, O)$ is **learnable by** L if for every state $s \in S$ and for every sound and complete data stream \vec{O} for s,

LEARNABILITY

Definition

 $\mathbb{S} = (S, O)$ is **learnable by** L if for every state $s \in S$ and for every sound and complete data stream \vec{O} for s, there is $n \in \mathbb{N}$ such that:

$$L(\mathbb{S}, \vec{O}[k]) = \{s\} \text{ for all } k \ge n.$$

An epistemic space S is **learnable** if it is learnable by a learner L.

PLAN FOR TODAY

Learnability in Epistemic Spaces

2 Learning Power of Belief Revision Operators

Learning and belief revision go their separate ways

Learning and belief revision go their separate ways

How can we connect truth-tracking with belief revision?

Learning and belief revision go their separate ways

- How can we connect truth-tracking with belief revision?
- Conjecture dynamics is a common theme.

Learning and belief revision go their separate ways

- How can we connect truth-tracking with belief revision?
- Conjecture dynamics is a common theme.
- What are the principles of these dynamics?

LONG-TERM LEARNING AND BELIEF REVISION

Learning and belief revision go their separate ways

- How can we connect truth-tracking with belief revision?
- Conjecture dynamics is a common theme.
- What are the principles of these dynamics?

LONG-TERM LEARNING AND BELIEF REVISION

Learning and belief revision go their separate ways

- How can we connect truth-tracking with belief revision?
- Conjecture dynamics is a common theme.
- What are the principles of these dynamics?

Truth-tracking!

PLAUSIBILITY SPACES

A **plausibility space**, $\mathbb{B}_{\mathbb{S}} = (S, O, \leq)$, consists of an epistemic space $\mathbb{S} = (S, O)$ and a plausibility preorder $\leq \subseteq S \times S$.

PLAUSIBILITY SPACES

A **plausibility space**, $\mathbb{B}_{\mathbb{S}} = (S, O, \leq)$, consists of an epistemic space $\mathbb{S} = (S, O)$ and a plausibility preorder $\leq \subseteq S \times S$.

Knowledge and Belief

$$\mathbb{B}_{\mathbb{S}} \vDash Kp \quad \text{iff} \quad S \subseteq p$$

$$\mathbb{B}_{\mathbb{S}} \vDash Bp \quad \text{iff} \quad \min_{\leq} S \subseteq p.$$

BELIEF-REVISION METHODS

Definition

A **belief-revision method** is a function R that, for any plausibility space $\mathbb{B}_{\mathbb{S}} = (S, O, \leq)$ and any observation O outputs a new plausibility space:

$$R(\mathbb{B}_{\mathbb{S}}, O) := (S', O, \leq').$$

BELIEF-REVISION METHODS

Definition

A **belief-revision method** is a function R that, for any plausibility space $\mathbb{B}_{\mathbb{S}} = (S, O, \leq)$ and any observation O outputs a new plausibility space:

$$R(\mathbb{B}_{\mathbb{S}}, O) := (S', O, \leq').$$

A belief revision R can be iterated in the following way:

$$R(\mathbb{B}_{\mathbb{S}}, \sigma * O) := R(R(\mathbb{B}_{\mathbb{S}}, \sigma), O)$$

where σ is a finite sequence of observations.

We will look at three belief-revision methods we are now familiar with Conditioning, Lexicographic, and Minimal.

We will look at three belief-revision methods we are now familiar with Conditioning, Lexicographic, and Minimal.

Some motivation for considering plausibility spaces:

Belief Revision: minimal states give beliefs.

We will look at three belief-revision methods we are now familiar with Conditioning, Lexicographic, and Minimal.

Some motivation for considering plausibility spaces:

- Belief Revision: minimal states give beliefs.
- Computational Learning Theory: co-learning, learning by erasing.

We will look at three belief-revision methods we are now familiar with Conditioning, Lexicographic, and Minimal.

Some motivation for considering plausibility spaces:

- Belief Revision: minimal states give beliefs.
- Computational Learning Theory: co-learning, learning by erasing.
- Philosophy of Science: Ockham's razor.

CONDITIONING

• **Conditioning** eliminates all worlds of *S* that do not satisfy the observation.

CONDITIONING

- **Conditioning** eliminates all worlds of *S* that do not satisfy the observation.
- This is like public announcement, but for a single agent's **belief** change

CONDITIONING

- **Conditioning** eliminates all worlds of *S* that do not satisfy the observation.
- This is like public announcement, but for a single agent's **belief** change

LEXICOGRAPHIC UPGRADE

 Lexicographic upgrade rearranges the preorder by putting all worlds satisfying the observation to be more plausible than others.

MINIMAL UPGRADE

 Minimal upgrade rearranges the preorder by making only the most plausible states satisfying the observation more plausible than all others, leaving the rest of the preorder the same.

LEARNING VIA BELIEF REVISION

Definition

Every belief-revision method R, together with a prior plausibility \leq generates in a canonical way a learning method L_R^{\leq} called a **belief-revision-based learning method**, and given by:

$$L_R^{\leq}((S, \mathcal{O}), \sigma) := \min_{\leq} R((S, \mathcal{O}, \leq), \sigma).$$

LEARNING VIA BELIEF REVISION

Definition

Every belief-revision method R, together with a prior plausibility \leq generates in a canonical way a learning method L_R^{\leq} called a **belief-revision-based learning method**, and given by:

$$L_R^{\leq}((S, \mathcal{O}), \sigma) := \min_{\leq} R((S, \mathcal{O}, \leq), \sigma).$$

Definition

An epistemic space $\mathbb S$ is **learnable by a belief-revision method** R if there exists a prior plausibility assignment \le such that L_R^{\le} learns $\mathbb S$.

LEARNING VIA BELIEF REVISION

Definition

Every belief-revision method R, together with a prior plausibility \leq generates in a canonical way a learning method L_R^{\leq} called a **belief-revision-based learning method**, and given by:

$$L_R^{\leq}((S, \mathcal{O}), \sigma) := \min_{\leq} R((S, \mathcal{O}, \leq), \sigma).$$

Definition

An epistemic space $\mathbb S$ is **learnable by a belief-revision method** R if there exists a prior plausibility assignment \le such that L_R^{\le} learns $\mathbb S$.

A. Baltag, N. Gierasimczuk, S. Smets. Truth tracking by belief revision. Studia Logica 2018.

Definition

L is **universal** if it can learn every epistemic space that is learnable.

	Conditioning	Lexicographic	Minimal
Positive Streams	YES	YES	NO

Definition

L is **universal** if it can learn every epistemic space that is learnable.

	Conditioning	Lexicographic	Minimal
Positive Streams	YES	YES	NO

Theorem

Definition

L is **universal** if it can learn every epistemic space that is learnable.

	Conditioning	Lexicographic	Minimal
Positive Streams	YES	YES	NO

Theorem

Definition

L is **universal** if it can learn every epistemic space that is learnable.

	Conditioning	Lexicographic	Minimal
Positive Streams	YES	YES	NO

Theorem

Definition

L is **universal** if it can learn every epistemic space that is learnable.

	Conditioning	Lexicographic	Minimal
Positive Streams	YES	YES	NO

Theorem

Definition

L is **universal** if it can learn every epistemic space that is learnable.

	Conditioning	Lexicographic	Minimal
Positive Streams	YES	YES	NO

Theorem

Definition

L is **universal** if it can learn every epistemic space that is learnable.

	Conditioning	Lexicographic	Minimal
Positive Streams	YES	YES	NO

Theorem

There is no universal belief-revision method under well-foundedness.

Definition

L is **universal** if it can learn every epistemic space that is learnable.

	Conditioning	Lexicographic	Minimal
Positive Streams	YES	YES	NO

Theorem

There is no universal belief-revision method under well-foundedness.

IS $\neg O$ OBSERVABLE?

An epistemic space $\mathbb{S} = (S, O)$ is **negation-closed** iff if $O \in \mathbb{O}$, then $\bar{O} \in \mathbb{O}$.

Definition

Let S = (S, O) be a negation-closed epistemic space. A stream \vec{O} is **fair** with respect to the world s if \vec{O} is complete wrt s, and contains only finitely many observations O, s.t. $s \notin O$ and every such error is eventually corrected in \vec{O} .

IS $\neg O$ OBSERVABLE?

An epistemic space $\mathbb{S} = (S, O)$ is **negation-closed** iff if $O \in \mathbb{O}$, then $\bar{O} \in \mathbb{O}$.

Definition

Let S = (S, O) be a negation-closed epistemic space. A stream \vec{O} is **fair** with respect to the world s if \vec{O} is complete wrt s, and contains only finitely many observations O, s.t. $s \notin O$ and every such error is eventually corrected in \vec{O} .

EXTENDED UNIVERSALITY RESULTS

	Conditioning	Lexicographic	Minimal
Positive	YES	YES	NO
Positive and Negative	YES	YES	NO
Fair Streams	NO	YES	NO

