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LEARNING IN THE LONG-TERM

So far, we have only talked about updates that happen in a single step.
What can we say about the long-term behavior of these updates?

• Consider the belief revision policies from yesterday:

announcement, LEX, and MINI.

• How good are they as learningmethods, in the long-term?

• Under what conditions are they reliable?

The same tools we develop to answer these questions we can then use for:

• a topological characterisation of learnability and solvability;

• a modal dynamic logic of learnability.
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EPISTEMIC SPACES AND OBSERVABLES

Definition
An epistemic space is a pairS = (S,O) consisting of a state space S and a
set of observablesO ⊆ P(S), both at most countable.

s t u w

O2O1
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LEARNING: STREAMS OF OBSERVABLES
Definition
LetS = (S,O) be an epistemic space.

• A data stream is an infinite sequence O⃗ = (O0,O1, . . .) of data fromO.

• A data sequence is a finite initial segment of an O⃗;

such a finite sequence of length n + 1 is denoted by
O⃗[n] = (O0, . . . ,On).

Definition
TakeS = (S,O) and s ∈ S. A data stream O⃗ is:

• soundwith respect to s iff every element listed in O⃗ is true in s.

• complete with respect to s iff every observable true in s is listed in O⃗.

We assume that data streams are sound and complete.
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LEARNING: LEARNERS AND CONJECTURES

Definition
LetS = (S,O) be an epistemic space and let O0, . . . ,On ∈ O.
A learner is a function L that on the input ofS and data sequence
(O0, . . . ,On) outputs some set of worlds

L(S, (O0, . . . ,On)) ⊆ S

We call this the learner’s conjecture.
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AN INTUITION ABOUT SEPARABILITY BY OBSERVATIONS

s t u w

O2O1

(a) t and u are not separable

t s
O2

O1

(b) weakly separated space T0

O2

t

O1

s

(c) strongly separated space T1
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LEARNABILITY

Definition
S = (S,O) is learnable by L if for every state s ∈ S

and for every sound and complete data stream O⃗ for s,
there is n ∈ N such that:

L(S, O⃗[k]) = {s} for all k ≥ n.

An epistemic spaceS is learnable if it is learnable by a learner L.
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EXAMPLE OF A LEARNABLE SPACE

LetS = (S,O) such that S = {sn ∣ n ∈ N},O = {Oi ∣ i ∈ N}, and for any k ∈ N,
Ok = {si ∣ 0 ≤ i ≤ k}. S is learnable.

O0 O1 O2 O3 O4 . . .

s0 s2

s0 s1 s2 s3 s4
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EXAMPLE OF A NON-LEARNABLE SPACE

ConsiderS = (S,O), where S := {sn ∣ n ∈ N} ∪ {s∞}, andO = {Oi ∣ i ∈ N},
and for any k ∈ N, Ok := {sk, sk+1, . . .} ∪ {s∞}. S is not learnable.

O0 O1 O2 O3 . . .

s1 s2

s0 s1 s2 s3 s∞
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LONG-TERM LEARNING AND BELIEF REVISION

Learning and belief revision go their separate ways

• How can we connect truth-tracking with belief revision?

• Conjecture dynamics is a common theme.

• What are the principles of these dynamics?

B B′
p

Truth-tracking!
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PLAUSIBILITY SPACES

A plausibility space, BS = (S,O,⪯), consists of an epistemic space
S = (S,O) and a plausibility preorder ⪯ ⊆ S × S.

Knowledge and Belief

BS ⊧ Kp iff S ⊆ p
BS ⊧ Bp iff min⪯S ⊆ p.
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BELIEF-REVISION METHODS

Definition
A belief-revisionmethod is a function R that, for any plausibility space
BS = (S,O,⪯) and any observation O outputs a new plausibility space:

R(BS,O) := (S′,O,⪯′).

A belief revision R can be iterated in the following way:

R(BS,σ ∗ O) := R(R(BS,σ),O)

where σ is a finite sequence of observations.
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ADDITIONAL COMMENTS ON BELIEF-REVISION METHODS

Wewill look at three belief-revision methods we are now familiar with

Conditioning, Lexicographic, and Minimal.

Somemotivation for considering plausibility spaces:

• Belief Revision: minimal states give beliefs.

• Computational Learning Theory: co-learning, learning by erasing.

• Philosophy of Science: Ockham’s razor.
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CONDITIONING

• Conditioning eliminates all worlds of S that do not satisfy the
observation.

• This is like public announcement, but for a single agent’s belief change
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LEXICOGRAPHIC UPGRADE

• Lexicographic upgrade rearranges the preorder by putting all worlds
satisfying the observation to bemore plausible than others.
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MINIMAL UPGRADE

• Minimal upgrade rearranges the preorder by making only the most
plausible states satisfying the observation more plausible than all
others, leaving the rest of the preorder the same.
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LEARNING VIA BELIEF REVISION

Definition
Every belief-revision method R, together with a prior plausibility ⪯
generates in a canonical way a learning method L⪯R
called a belief-revision-based learningmethod, and given by:

L⪯R((S,O),σ) :=min⪯R((S,O,⪯),σ).

Definition
An epistemic spaceS is learnable by a belief-revisionmethod R if
there exists a prior plausibility assignment ⪯ such that L⪯R learnsS.

A. Baltag, N. Gierasimczuk, S. Smets. Truth tracking by belief revision. Studia Logica
2018.
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UNIVERSALITY RESULTS

Definition
L is universal if it can learn every epistemic space that is learnable.

Conditioning Lexicographic Minimal

Positive Streams YES YES NO
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UNIVERSALITY RESULTS

Definition
L is universal if it can learn every epistemic space that is learnable.

Conditioning Lexicographic Minimal

Positive Streams YES YES NO

Theorem
There is no universal belief-revision method under well-foundedness.

O0 O1 O2 . . .
s0 s2s0 s1
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IS ¬O OBSERVABLE?

An epistemic spaceS = (S,O) is negation-closed iff if O ∈ O, then Ō ∈ O.

O Ō
s0 s2s1

Definition
LetS = (S,O) be a negation-closed epistemic space. A stream O⃗ is fairwith
respect to the world s if O⃗ is complete wrt s, and contains only finitely many
observations O, s.t. s /∈ O and every such error is eventually corrected in O⃗.
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EXTENDED UNIVERSALITY RESULTS

Conditioning Lexicographic Minimal

Positive YES YES NO
Positive and Negative YES YES NO

Fair Streams NO YES NO
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END OF LECTURE 3

Thank you!
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