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LEARNING IN THE LONG-TERM

So far, we have only talked about updates that happen in a single step.
What can we say about the long-term behavior of these updates?

Consider the belief revision policies from yesterday:
announcement, LEX, and MINI.
How good are they as learning methods, in the long-term?
Under what conditions are they reliable?
The same tools we develop to answer these questions we can then use for:
a topological characterisation of learnability and solvability;

a modal dynamic logic of learnability.



EPISTEMIC SPACES AND OBSERVABLES

Definition
An epistemic space is a pair S = (S, 0) consisting of a state space Sand a

set of observables O c P(S), both at most countable.
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LEARNING: STREAMS OF OBSERVABLES

Definition

Let S = (S, 0) be an epistemic space.
A data stream is an infinite sequence O = (0o, 01, . ..) of data from 0.
A data sequence is a finite initial segment of an O;

such a finite sequence of length n + 1 is denoted by
O[n] = (Oy,-..,0n).
Definition
Take S = (S,0) and s € S. A data stream O is:
sound with respect to s iff every element listed in O is true in s.
complete with respect to s iff every observable true in s is listed in O.

We assume that data streams are sound and complete.



LEARNING: LEARNERS AND CONJECTURES

Definition
Let S = (S, 0) be an epistemic space and let O, ...,0, € O.
Alearner is a function L that on the input of S and data sequence

(Og, - - .,0n) outputs some set of worlds
L(S, (0g,...,0n)) €S

We call this the learner’s conjecture.



AN INTUITION ABOUT SEPARABILITY BY OBSERVATIONS

0, 0,

S

(a) t and u are not separable

0, 0,
(9 ()

(b) weakly separated space 70 (c) strongly separated space T1
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LEARNABILITY

Definition
S =(S,0) is learnable by L if for every states € S
and for every sound and complete data stream O for s,

thereis n € N such that:
L(S,0[k]) = {s} forall k > n.

An epistemic space S is learnable if it is learnable by a learner L.
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LONG-TERM LEARNING AND BELIEF REVISION

Learning and belief revision go their separate ways
How can we connect truth-tracking with belief revision?
Conjecture dynamics is a common theme.

What are the principles of these dynamics?

Truth-tracking!
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A plausibility space, Bg = (S, 0, <), consists of an epistemic space
S =(S,0) and a plausibility preorder << S x S.

Knowledge and Belief

Bg =Kp iff Scp
Bs =Bp iff min<Scp.
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BELIEF-REVISION METHODS

Definition
A belief-revision method is a function R that, for any plausibility space
Bs = (S, 0, <) and any observation O outputs a new plausibility space:

R(Bs,0) := (S',0,<").
A belief revision R can be iterated in the following way:
R(Bs, 0 * 0) := R(R(Bs, 0),0)

where ¢ is a finite sequence of observations.
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ADDITIONAL COMMENTS ON BELIEF-REVISION METHODS

We will look at three belief-revision methods we are now familiar with
Conditioning, Lexicographic, and Minimal.

Some motivation for considering plausibility spaces:
Belief Revision: minimal states give beliefs.
Computational Learning Theory: co-learning, learning by erasing.

Philosophy of Science: Ockham’s razor.
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CONDITIONING

Conditioning eliminates all worlds of S that do not satisfy the

observation.

This is like public announcement, but for a single agent’s belief change

delete




LEXICOGRAPHIC UPGRADE

Lexicographic upgrade rearranges the preorder by putting all worlds

satisfying the observation to be more plausible than others.



MINIMAL UPGRADE

Minimal upgrade rearranges the preorder by making only the most
plausible states satisfying the observation more plausible than all

others, leaving the rest of the preorder the same.
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LEARNING VIA BELIEF REVISION

Definition

Every belief-revision method R, together with a prior plausibility <
generates in a canonical way a learning method L

called a belief-revision-based learning method, and given by:

L5((S,0),0) := min<R((S,0,<),0).

Definition
An epistemic space S is learnable by a belief-revision method R if

there exists a prior plausibility assignment < such that L3 learns S.

@ A. Baltag, N. Gierasimczuk, S. Smets. Truth tracking by belief revision. Studia Logica
2018.
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respect to the world s if O is complete wrt s, and contains only finitely many

observations O, s.t. s ¢ O and every such error is eventually corrected in O.
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Let'S = (S, 0) be a negation-closed epistemic space. A stream O is fair with

Definition

respect to the world s if O is complete wrt s, and contains only finitely many

observations O, s.t. s ¢ O and every such error is eventually corrected in O.



EXTENDED UNIVERSALITY RESULTS

Conditioning Lexicographic Minimal

Positive YES YES NO
Positive and Negative YES YES NO
Fair Streams NO YES NO
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