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THE PROBLEM OF BELIEF REVISION

Belief revision is a topic of much interest in theoretical computer science
and logic, and it forms a central problem in research into artificial
intelligence. In simple terms: how do you update a database of knowledge
in the light of new information? What if the new information is in conflict
with something that was previously held to be true?

Gärdenfors, Belief Revision

• CS: updating databases (Doyle 1979 and Fagin et al. 1983)

• Philosophy (epistemology):

– scientific theory change and revisions of probability assignments;
– belief change (Levi 1977, 1980, Harper 1977) and its rationality.
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AGM BELIEF REVISION MODEL

• Names: Carlos Alchourrón, Peter Gärdenfors, and DavidMakinson.

• 1985 paper in the Journal of Symbolic Logic.

• Starting point of belief revision theory.
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BELIEF REPRESENTATION IN AGM

We are talking about beliefs rather than knowledge.

Here, the difference is that beliefs are changeable and can be false.

• belief := sentence

• belief := sentence in some formal language

• beliefs of an agent := a set of such sentences

Language of Beliefs in AGM
Beliefs are expressed in propositional logic:

• propositions p,q, r, . . .

• connectives: negation (¬), conjunction (∧), disjunction (∨), implication
(→), and biconditional (↔).
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BELIEF SETS
Example (What are the consequences of my beliefs?)

1. John is a bachelor. John is handsome. John is a handsome bachelor.

2. If we charge high fees for university, only the rich enroll. We charge
high fees for university. Only the rich enroll.

3. The barber is male. The barber shaves only those men in town who do
not shave themselves. The barber is female.

Belief set is a set of formulas that is deductively closed.

Definition
For any set B of sentences, Cn(B) is the set of logical consequences of B.

Ifφ can be derived from B by classical propositional logic, thenφ ∈ Cn(B).
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THREE WAYS OF TAKING IN NEW INFORMATION

What can I do to my belief set?

1. Revision: B ∗φ;φ is added and other things are removed, so that the
resulting new belief set B′ is consistent.

2. Contraction: B ÷φ;φ is removed from B giving a new belief set B′.

3. Expansion: B +φ;φ is added to B giving a new belief set B′.
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AGM÷ RATIONALITY POSTULATES OF CONTRACTION
1. Closure: B ÷φ = Cn(B ÷φ) (the outcome is logically closed)
2. Success: Ifφ ∉ Cn(∅), thenφ ∉ Cn(B ÷φ)

the outcome does not containφ
3. Inclusion: B ÷φ ⊆ B (the outcome is a subset of the original set)
4. Vacuity: Ifφ ∉ Cn(B), then B ÷φ = B

if the incoming sentence is not in the original set then there is no effect
5. Extensionality: Ifφ↔ ψ ∈ Cn(∅), then B ÷φ = B ÷ψ.

the outcomes of contracting with equivalent sentences are the same
6. Recovery: B ⊆ (B ÷φ) +φ.

contraction leads to the loss of as few previous beliefs as possible
7. Conjunctive inclusion: Ifφ ∉ B ÷ (φ ∧ψ), then B ÷ (φ ∧ψ) ⊆ B ÷φ.
8. Conjunctive overlap: (B ÷φ) ∩ (B ÷ψ) ⊆ B ÷ (φ ∧ψ).
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AGM∗ RATIONALITY POSTULATES OF REVISION

1. Closure: B ∗φ = Cn(B ∗φ)

2. Success: φ ∈ B ∗φ

3. Inclusion: B ∗φ ⊆ B +φ

4. Vacuity: If ¬φ ∉ B, then B ∗φ = B +φ

5. Consistency: B ∗φ is consistent ifφ is consistent.

6. Extensionality: If (φ↔ ψ) ∈ Cn(∅), then B ∗φ = B ∗ψ.

7. Superexpansion: B ∗ (φ ∧ψ) ⊆ (B ∗φ) +ψ

8. Subexpansion: If ¬ψ ∉ B ∗φ, then (B ∗φ) +ψ ⊆ B ∗ (φ ∧ψ).
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HARPER IDENTITIY

One formal way to combine those two is to use:

Harper identity (HR)

B ÷φ := (B ∗ ¬φ) ∩ K.

Given an AGM ∗ function, the ÷ obtained by HR is an AGM-contraction.
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REVISION AND CONTRACTION ON PLAUSIBILITY ORDERS
p,q p, q̄ p̄,q p̄, q̄

z
w

y
x

Plausibility order over valuations

more plausible
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y
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B is determined by the most plausible world(s)
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REVISION AND CONTRACTION ON PLAUSIBILITY ORDERS
p,q p, q̄ p̄,q p̄, q̄

z
w

y
x

B ∗ ¬p is determined by min world(s) with ¬p
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REVISION AND CONTRACTION ON PLAUSIBILITY ORDERS
p,q p, q̄ p̄,q p̄, q̄

z
w

y
x

B ÷ p is the union of the previous two

more plausible
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FORMALLY
p,q p, q̄ p̄,q p̄, q̄

z
w

y
x

more plausible

Definition
Let P be a set of propositions (e.g. above, P = {p,q}). A plausibility order
is a total preorder ≤ over the possible truth assignmentsW on P. A total
preorder on X is a binary relation that is:

• transitive: for all x, y, z ∈ X, if x ≤ y and y ≤ z, then x ≤ z;

• complete: for all x, y ∈ X, x ≤ y or y ≤ x.
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FORMALLY

p,q p, q̄ p̄,q p̄, q̄
z

w
y

x

more plausible

Let B be a belief set,φ a formula, and let [φ] := {x ∈ W ∣φ is true in x}.

• φ ∈ B iffmin≤(W) ⊆ [φ];

• φ ∈ B ∗ψ iffmin≤([ψ]) ⊆ [φ];

• φ ∈ B ÷ψ iffmin≤([¬ψ]) ∪min≤(W) ⊆ [φ]
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DALAL’S REVISION: HAMMING DISTANCE IN ACTION
The difference between two r, r′ ∈ W, Diff(r, r′) is the set of propositional
variables that have different truth values in the two worlds.

Given a belief set K and and a world r, the distance between K and r,
D(K, r), is the cardinality-minimum difference between r and the K-worlds.

Definition (Dalal’s revision)
[K ∗D φ] = min([φ],⊑K), where ⊑K is a total preorder on K, s.t.:

r ⊑K r′ iff D(K, r) ≤ D(K, r′).

The distance between the two belief sets K1 and K2 is defined as:

Dist(K1,K2) = ∣([K1] ∖ [K2]) ∪ ([K2] ∖ [K1])∣.
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DALAL IS AGM

Dalal’s revision satisfies the AGM postulates.
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OUTLINE

1 Introduction to AGM-Style Belief Revision

2 Machine Learning and AGM Belief Revision
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ARTIFICIAL NEURAL NETWORKS
An ANN is a directed acyclic graph G = (V ,E), with V neurons and E
connections between neurons. (Here we only consider feed-forward nets.)
V comes as a set of distinct, ordered subsets (layers) V0, . . . ,VL, where:

• V0 is the input layer: X1, . . . , Xn.

• VL is the output layer: y1, . . . , ym.

• V1,V2, . . . ,VL−1 are the hidden layers.

A layer Vl, for l = 0, . . . , L, is a set of neurons such that:

• For l = 0, V0 receives the external inputs X1, . . . , Xn.

• For l = L, VL produces outputs y1, . . . , ym.

• For l = 1, 2, . . . , L − 1, Vl receives only from Vl−1, and sends only to Vl+1.

E = {(u, v) ∣ u ∈ Vl−1, v ∈ Vl, for l = 1, . . . , L}.
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COMPUTATION OF AN ACTIVATION

Each neuron v ∈ V ∖ V0 computes aweighted sum of its inputs, adds a bias
term, and then applies a non-linear activation function σ. Specifically, for a
neuron v ∈ Vl in layer l (where l = 1, 2, . . . , L), the output zv is given by

zv = σ
⎛
⎝ ∑u∈Vl−1

wuv ⋅ xu + bv
⎞
⎠

.

Here,wuv is the weight of the edge from neuron u in layer Vl−1 to neuron v
in layer Vl, xu is the output of neuron u, and bv is the bias of neuron v.

Activation functions: sigmoid, Rectified Linear Unit (ReLU), and softmax.
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BINARY ANN

We only consider feed-forward ANNs, with inputs X1, . . . , Xn ∈ {0, 1}.
Given a threshold τi ∈ [0, 1], output yi becomes a binary Yi:

Yi =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 if yi ≥ τi
0 if yi < τi
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BINARY ANN
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BINARY ANN AS A BELIEF SET

Binary ANN computes the boolean function:

Y = f(X1, . . . Xn)

which can be represented as a propositional formulaψ.

Then, for the belief set K = Cn(ψ), we have: [K] = [ψ].

Similarly, ANN with multiple outputs Y1, . . . , Ym can be represented as
S = ⟨K1, . . . ,Km⟩ of belief sets (a belief state/epistemic space).
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TRAINING AN ANN

Training an ANN involves iteratively tuning its parameters (i.e., thewuv’s
and bv corresponding to every neuron) in order to minimize the disparity
between the desired/actual outputs and the predictions of the network,
thereby improving its predictive accuracy.

Forward propagation: input propagates according to the weights.

Backpropagation: computing the gradient of the loss functionL (measure
of prediction error) relative to each parameter (weight and bias).
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ASSUMPTIONS ABOUT THE LOSS FUNCTION

• Smoothness: In each iteration the value of loss function decreases.

• Monotonicity: Loss function is monotonically related to the sum of
absolute errors across all predictions (of all samples).
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RESULTS
Consider a single-output binary ANN whose training process satisfies
smoothness and monotonicity. Let Y be the output.

Theorem
Let Kn be the Boolean function of Y corresponding to the labels and
K1, . . . ,Kn be belief sets, s.t. for any i ∈ {1, . . . ,n − 1}, Ki and Ki+1 are
Boolean functions of Y just before and after the i-th update. Then for any
i, j ∈ {1, . . . ,n}, such that i < j: Dist(Ki,Kn) ≥ Dist(K j,Kn).

Theorem
Let K1 and K2 represent the boolean functions of Y before and after an
arbitrary update of ANN’s parameters. Then there are AGM-style ∗ and ÷, and
formulasφ,φ′, s.t.

K2 = (K1 ∗φ1) ÷φ2
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WHAT HAVE WE LEARNED IN THIS COURSE?
We have introduced three paradigms of learning:

• Model-Theoretic Learning:

Belief Revision Theory & Dynamic Epistemic Logic (DEL)

• Function Learning: Machine Learning, Neural Network Learning

• Set Learning: Computational Learning Theory, Learning in the Limit

And showed that these perspectives are compatible with each other!

• Belief revision can be modelled as DEL updates

• Neural network updates can be modelled as DEL updates (DEL can
give us complete characterizations of learning)

• We can study belief revision operators’ ability to learn in the limit

• Backpropagation in a neural net is AGM-compatible
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END OF THE COURSE

Thank you for attending our NASSLLI’25 class on

Computational Learning in Dynamic Logics!

Please get in touch with us at
• Nina: nigi@dtu.dk
• Caleb: cckisby@gmail.com

If you have further questions, comments, or feedback. We are happy to
help with the course exercises and chat about open problems in the area!

31 / 31

mailto:nigi@dtu.dk
mailto:cckisby@gmail.com

	Introduction to AGM-Style Belief Revision
	Machine Learning and AGM Belief Revision

