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Public Announcements

4.1 Introduction

If I truthfully say ‘a kowhai tree has yellow flowers’ to a group of friends, that
fact is then commonly known among them. This indeed works for propositions
about facts, such as in the example, but it is a mistaken intuition that whatever
you announce is thereafter commonly known: it does not hold for certain
epistemic propositions.

Example 4.1 (Buy or sell?) Consider two stockbrokers Anne and Bill,
having a little break in a Wall Street bar. A messenger comes in and delivers a
letter to Anne. On the envelope is written “urgently requested data on United
Agents”. Anne opens and reads the letter, which informs her of the fact that
United Agents is doing well, such that she intends to buy a portfolio of stocks
of that company, immediately. Anne now says to Bill: “Guess you don’t know
it yet, but United Agents is doing well.” O

Even if we assume that Anne only speaks the truth, and that her conjecture
about Bill is correct, Anne is in fact saying two things, namely both “it is true
that United Agents is doing well” and “it is true that Bill does not know that
United Agents is doing well”. As a consequence of the first, Bill now knows
that United Agents is doing well. He is therefore no longer ignorant of that
fact. Therefore, “Bill does not know that United Agents is doing well” is
now false. In other words: Anne has announced something which becomes
false because of the announcement. This is called an unsuccessful update.
Apparently, announcements are like footsteps in a flowing river of information.
They merely refer to a specific moment in time, to a specific information state,
and the information state may change because of the the announcement that
makes an observation about it.

What is a convenient logical language to describe knowledge and
announcements? The phenomenon of unsuccessful updates rules out an
appealing straightforward option of a ‘static’ nature. Namely, if announce-
ments always became common knowledge, one could have modelled them
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68 4 Public Announcements

‘indirectly’ by referring to their pre- and postcondition: the precondition is
the announcement formula, and the postcondition common knowledge of that
formula. But, as we have seen, sometimes announced formulas become false,
and in general something other than the announcement may become common
knowledge. The relation between the announcement and its postcondition is
not straightforward. Therefore, the ‘meaning’ of an announcement is hard to
grasp in a static way. An operator in the language that expresses the ‘act’
of announcing is to be preferred; and we can conveniently grasp its meaning
in a dynamic way. By ‘dynamic’ we mean, that the statement is not given
meaning relative to a (static) information state, but relative to a (dynamic)
transformation of one information state into another information state. Such
a binary relation between information states can be captured by a dynamic
modal operator. To our basic multi-agent logical language we add such dy-
namic modal operators for announcements. This chapter deals with the thus
obtained public announcement logic.

We start with looking at our warming-up example in more detail. The
Sections ‘Syntax’, ‘Semantics’, and ‘Axiomatisation’ present the logic. The
completeness proof is deferred to Chapter 7. ‘Muddy Children’, ‘Sum and
Product’, and ‘Russian Cards’ present logical puzzles.

4.2 Examples

‘Buy or sell?’ continued Let us reconsider Example 4.1 where Anne (a)
and Bill (b) ponder the big company’s performance, but now in more detail.
Let p stand for ‘United Agents is doing well’. The information state after
Anne has opened the letter can be described as follows: United Agents is doing
well, Anne knows this, and Anne and Bill commonly know that Anne knows
whether United Agents is doing well. This information state is represented by
the epistemic state below, and to be explicit once more, we draw all access
between states.

In the figure, 0 is the name of the state where p is false, and 1 is the name of
the state where p is true. All relations are equivalence relations. We therefore
prefer the visualisation where reflexivity and symmetry are assumed, so that
states that are the same for an agent need to be linked only. Transitivity
is also assumed. A link between states can also have more than one label.
See Chapter 2 where these conventions were introduced. In this case, we get
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We assume that Anne only makes truthful announcements, and only public
announcements. Because the announcement is truthful, the formula of the
announcement must be true on the moment of utterance, in the actual state.
That the announcement is public, means that Bill can hear what Anne is
saying, that Anne knows that Bill can hear her, etc., ad infinitum. We can
also say that it is common knowledge (for Anne and Bill) that Anne is making
the announcement. From ‘truthful’ and ‘public’ together it follows that states
where the announcement formula is false are excluded from the public eye as
a result of the announcement. It is now commonly known that these states
are no longer possible. Among the remaining states, that include the actual
state, there is no reason to make any further epistemic distinctions that were
not already there.

It follows that the result of a public announcement is the restriction of the
epistemic state to those states where the announcement is true, and that all
access is kept between these remaining states. The formula of the announce-
ment in Example 4.1 is p A = Kpp. The formula p A = K;p only holds in state 1
where p holds and not in state 0 where p does not hold. Applied to the current
epistemic state, the restriction therefore results in the epistemic state

AN\

1 a b

N/

In this state it is common knowledge that p. In our preferred visualisation
we get

|=

In the epistemic state before the announcement, = K,p was true, and after
the announcement Kp is true, which follows from the truth of Cg,p. In the
epistemic state before the announcement, the announced formula p A = Kpp
was of course true. After its announcement, its negation has become true.
Note that —(p A = K}p) is equivalent to —p V Kpp which follows by weakening
from Kpp.
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/ pA~Kip /

b

P A ﬁK},p
Figure 4.1. Buy or Sell?

Figure 4.1 contains an overview of the visualisations and transitions in this
example. Before the formal introduction of the language and its semantics, we
first continue with other examples of announcements, in a different setting.

Example 4.2 (Three player card game) Anne, Bill, and Cath have each
drawn one card from a stack of three cards 0, 1, and 2. This is all commonly
known. In fact, Anne has drawn card 0, Bill card 1, and Cath card 2. Anne
now says “I do not have card 1”. O

Write 012 for the deal of cards where Anne holds 0, Bill holds card 1, and
Cath holds card 2. The deck of cards is commonly known. Players can only
see their own card, and that other players also hold one card. They therefore
know their own card and that the cards of the other players must be different
from their own. In other words: deals 012 and 021 are the same for Anne,
whereas deals 012 and 210 are the same for Bill, etc. There are, in total, six
different deals of cards over agents. Together with the induced equivalence
relation by knowing your own card, and the actual deal of cards, we get the
epistemic state (Heza, 012):

o

12— a —021

\

c b

>

102/— — a —\120
\ N/

N/ \/

201 — a —210

Facts are described by atoms such as 0, for ‘Anne holds card 0’. Let
us have a look at some epistemic formulas too. In this epistemic state, it
holds that ‘Anne knows that Bill doesn’t know her card’ which is formally
K,~(Ky0, V Kpl, V K2,). Tt also holds that ‘Anne considers it possible that
Bill holds card 2 whereas actually Bill holds card 1’ which is formally 1yAK 2.
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We also have that ‘It is commonly known that each player holds (at most)
one card’ described by Cupc((04 — (=14 A—24)) A ... ). Anne’s announcement
“I do not have card 1”7 corresponds to the formula —1,. This announcement
restricts the model to those states in which the formula is true, i.e., to the
four states 012, 021, 201, and 210 where she does not hold card 1. As said,
the new accessibility relations are the old ones restricted to the new domain.

o

12— a —021

\

c b

/N

201 — a —210

In this epistemic state, it holds that Cath knows that Anne holds 0—
described by K.0,—even though Anne does not know that Cath knows
that—described by — K, K .0,—whereas Bill still does not know Anne’s card—
described by —(K30, V Kpl, V Kp2,). More specifically, Bill does not know
that Anne holds card 0: =K,0,. Yet other informative announcements can be
made in this epistemic state:

Example 4.3 (Bill does not know Anne’s card) In the epistemic state
resulting from Anne’s announcement “I do not have card 17, Bill says “I still
do not know your card”. O

The announcement formula —( K0,V K1,V Kp2,) only holds in b-equivalence
classes where Bill has an alternative card for Anne to consider, so, in this case,
in the class {012,210}. The announcement therefore results in the epistemic
state

12

210

We can see that the announcement was informative for Anne, as she now
knows Bill’s card. Still, Bill does not know hers. If Anne were proudly to
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(==}

012— a —021 12— a —021

/ \b
102/—\— a —\120 %h)
\ N/ \

N/ N/ C

201 — a —210 201 — a —210

_‘(Kboa V Kplg V KbQH)

0o A1y A2e

210

Figure 4.2. The result of three subsequent announcements of card players. The top
left figure visualises Anne, Bill, and Cath holding cards 0, 1, and 2, respectively.

announce that she now knows Bill’s card, that would not make a difference,
as K,0pV K 1,V K42p holds in both 012 and 210: this was already commonly
known to all players. In other words, the same epistemic state results from
this announcement. If instead she announces that she now knows that the
card deal is 012, no further informative public announcements can be made.

012

An overview of the information changes in this ‘cards’ example is found in
Figure 4.2. We now formally introduce the language and its semantics.

4.3 Syntax

Definition 4.4 (Logical languages Lk (A, P) and Lkcp(A, P))
Given are a finite set of agents A and a countable set of atoms P. The
language Lx (A, P) (or, when the set of agents and atoms are clear or not
relevant, L), is inductively defined by the BNF
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o u= plop|(eAe) | Kap | Cpe | [ple

where @ € A, B C A, and p € P. Without common knowledge, we get the
logical language Lk (A, P), or Lk Its BNF is

o = plop|(eAe) | Kep | [@le O

The new construct in the language is [¢]i)—mnote that, as usual, in the BNF
form [p]¢ we only express the type of the formulas, which is the same for the
announcement formula and the one following it, whereas the more common
mathematical way to express this is as an inductive construct [p]i that is
formed from two arbitrary and possibly different formulas ¢ and 1. Formula
[¢]1 stands for ‘after announcement of ¢, it holds that ¢’. Alternatively, we
may sometimes say ‘after update with , it holds that ¢y’—mnote that ‘update’ is
a more general term also used for other dynamic phenomena. For ‘announce-
ment’, always read ‘public and truthful announcement’. Strictly speaking, as
[¢] is a O-type modal operator, formula [¢]1) means ‘after every announcement
of ¢, it holds that ¢’, but because announcements are partial functions, this is
the same as ‘after announcement of ¢, it holds that ¢’. The dual of [¢] is ().
Formula (p)1) therefore stands for ‘after some truthful public announcement
of ¢, it holds that ¢’. Unlike the O-form, this formulation assumes that ¢ can
indeed be truthfully announced—but here we are anticipating the semantics
of announcements.

Example 4.5 Anne’s announcement ‘(United Agents is doing well and) You
don’t know that United Agents is doing well” in Example 4.1 was formalised as
pA—Kpp. That it is an unsuccessful update, or in other words, that it becomes
false when it is announced, can be described as (p A = Kpp)—(p A = Kpp). This
description uses the diamond-form of the announcement to express that an
unsuccessful update can indeed be truthfully announced. O

Example 4.6 In the ‘three cards’ Example 4.2, Anne’s announcement ‘I do
not have card 1’ was described by —1,. Bill’s subsequent announcement ‘I do
not know your card’ was described by —(K,0,V K1,V Kp2,), and Anne’s sub-
sequent announcement ‘The card deal is 012’ was described by 0,A1,A2.. After
this sequence of three announcements, Bill finally gets to know Anne’s card:
K0,V K1,V Kp2,. See also Figure 4.2. This sequence of three announcements
plus postcondition is described by

[ﬁla}[—'(Kboa VvV Kpl, V Kb2a)][0a A1y A 20](Kb0a VvV Kpl, Vv Kan)

If the third announcement had instead been Anne saying ‘I now know your
card’ (described by K,0, V K1, V K,2p), Bill would not have learnt Anne’s
card:

[ﬂla}[—\(KbOa VvV Kpl, V KbQQ)HKaOb VK, 1,V KaZb]—\(Kboa VvV Kpl, V Kb2a)
[l
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For theoretical reasons—related to expressive power, and completeness—
the language Lk, without common knowledge operators, is of special interest.
Otherwise, we tend to think of the logic for the language Lx ¢ as the ‘public
announcement logic’, in other words, public announcement logic is the logic
with common knowledge operators.

4.4 Semantics

The effect of the public announcement of ¢ is the restriction of the epistemic
state to all (factual) states where ¢ holds, including access between states.
So, ‘announce ¢’ can be seen as an epistemic state transformer, with a cor-
responding dynamic modal operator [¢]. We need to add a clause for the
interpretation of such dynamic operators to the semantics. We remind the
reader that we write V,, for V(p), ~, for ~(a), ~p for (U,cp ~a)*, and [o]
for {s e D(M) | M, s = ¢}.

Definition 4.7 (Semantics of the logic of announcements) Given is
an epistemic model M = (S, ~, V) for agents A and atoms P.

M,skE=p iff seV,

M,s = —p iff M,sl:ep

M,sEoAy iff M,sEgpand M,sE1

M,sEKy,p iff forall teS:sn~,timplies M,tE ¢
M,sE=Cpgp iff forall teS:s~ptimplies M,tE¢
M,skE=lplv iff M,sE pimplies M|p,s =1

where M| = (S’,~', V') is defined as follows:

S = lelm
~o = ~a N ([l < [¢]mr)
Vp =V lelu O

The dual of [¢] is (p):

M,sE(p)y it M,sEgand Mlp,sEy

The set of all valid public announcement principles in the language L,
without common knowledge is denoted PA, whereas the set of validities in the
full language Lk ¢y is denoted PAC.

Some knowledge changes that are induced by Anne’s announcement in the
‘three cards’ Example 4.2 that she does not have card 1, see also Figure 4.2,
are computed in detail below, to give an example of the interpretation of an-
nouncements. For a different and more visual example, see Figure 4.3, wherein
we picture the result of Bill’s subsequent announcement ‘I do not know Anne’s
card’.



4.4 Semantics 75

Example 4.8 Let (Heza,012) be the epistemic state for card deal 012. In
that epistemic state it is true that, after Anne says that she does not have
card 1, Cath knows that Anne holds card 0; formally Heza, 012 |= [-1,] K 0q:

We have that Heza,012 | [-1,]K.0, iff ( Hexza,012 E -1, implies
Heza|-1,,012 E K.0, ). Concerning the antecedent, Hexa,012 = —1, iff

p-states announcement (p-states

P
—p-states

>

(K04 V Kpla V Kp24)

210 —[- a — 201

S = {012,021, 201, 210} s" = {012,210}
~p = {(012,012), (012,210), ... }||~h= ~ N{012,210}% = .. .,
=~ = ~ =~ =
012,021}, Vg, = Vo, N{012,210} = {012},

Vo. =1
Vi, =0,... Vi =W, n{012,210} =0,...

Figure 4.3. Visualisation of the semantics of an announcement. From top to bot-
tom: the abstract semantics of an announcement, the effect of Bill announcing ‘I
do not know your card, Anne’, and the formal representation of the two corre-
sponding epistemic states. The middle left figure pictures the same epistemic state
(Heza|—14,012) as ‘the one with crossed legs’ top right in Figure 4.2. We have
merely flipped 210—a—201 in the current visualisation, for our convenience.
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Heza,012 = 1,. This is the case iff 012 ¢ V(= {102,120}), and the latter
is true.

It remains to show that Hexa|—1,,012 = K.0,. This is equivalent to ‘for
all s € D(Heza|-1,): 012 ~ s implies Hexa|—1,, s = 0,. Only state 012 itself
is c-accessible from 012 in {012, 021, 210, 201 }. Therefore, the condition is
fulfilled if Heza|-1,,012 |= 0,. This is so, because 012 € V, = {012,021}.

In epistemic state (Heza, 012) it is also true that, after Anne says that she
does not have card 1, Bill does not know that Anne holds card 0; formally
Hexa, 012 = [-1,]-K0,:

We have that Heza,012 | [-1,]-K3p0, iff ( Heza,012 = —1, implies
Heza|-1,,012 |= = K30, ). The premiss is satisfied as before. For the con-
clusion, Heza|—1,4,012 = - K0, iff Hexa|—1,4,012 = K0, iff there is a state
s such that 012 ~;, s and Heza|-1,,s = 0,. State 210 = s satisfies that:
012 ~y, 210 and Heza|—-1,4,210 B~ 0,4, because 210 ¢ V,, = {012,021}. O

Exercise 4.9 After Anne has said that she does not have card 1, she considers
it possible that Bill now knows her card: [—\la]IA(aK 0. If Bill has 2 and learns
that Anne does not have 1, Bill knows that Anne has 0. But, of course, Bill
has 1, and ‘does not learn very much.” Also, after Anne has said that she
does not have card 1, Cath—who has 2—knows that Bill has 1 and that Bill
therefore is still uncertain about Anne’s card: [-1,]K.—K}0,. Finally, when
Anne says that she does not have card 1, and then Bill says that he does
not know Anne’s card, and then Anne says that the card deal is 012, it has
become common knowledge what the card deal is. Make these observations
precise by showing all of the following:

o Hezxa, 012 [ﬁla]RaKbOa
e Hexa, 012 ): [ﬁla]KcﬁKbOa
e Hexa, 012 ’: [_‘]—a] [—|(K1,0a vV Kpl, Vv KbQQ)][Oa Alp A 2c]Cabc(0a Alp A QC)D

Revelation So far, all announcements were made by an agent that was also
modelled in the system. We can also imagine an announcement as a ‘public
event’ that does not involve an agent. Such an event publicly ‘reveals’ the
truth of the announced formula. Therefore, announcements have also been
called ‘revelations’—announcements by the divine agent, that are obviously
true without questioning. In fact, when modelling announcements made by
agents occurring in the model, we have overlooked one important aspect: when
agent a announces ¢, it actually announces K,p—I know that ¢, and in a
given epistemic state K,p may be more informative than ¢. For example,
consider the four-state epistemic model in the top-right corner of Figure 4.2.
In state 021 of this model, there is a difference between Bill saying “Anne
has card 0” and a ‘revelation’ in the above sense of “Anne has card 0”. The
former—given that Bill is speaking the truth—is an announcement of K30,
which only holds in state 021 of the model, so it results in the singleton model
021 where all agents have full knowledge of the card deal. Note that in state
012 of the model 0, is true but Bill does not know that, so K;0, is false.
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But a revelation “Anne has card 0”7 is indeed ‘only’ the announcement of 0,
which holds in states 012 and 021 of the model, and results in epistemic state
012 a 021 where Anne still does not know the card deal.

In multi-agent systems the divine agent can be modelled as the ‘insider’
agent whose access on the domain is the identity, in which case we have that
¢ > Kinsiderp is valid (on 85). Otherwise, when an agent says ¢, this is an
announcement of K,p, and we do not have that K,p < ¢. See Section 4.12

on the Russian Cards problem for such matters.

4.5 Principles of Public Announcement Logic

This section presents various principles of public announcement logic, more
precisely, ways in which the logical structure of pre- and postconditions inter-
acts with an announcement.

If an announcement can be executed, there is only one way to do it. Also,
it cannot always be executed. In other words, announcements are partial
functions.

Proposition 4.10 (Announcements are functional) It is valid that

(o) — [l O

Proof Let M and s be arbitrary. We then have that M, s = (o) iff ( M, s |
¢ and M|p,s =1 ). The last (propositionally) implies ( M, s = ¢ implies
Mlp, s =1 ) which is by definition M, s = [¢]4. O

Proposition 4.11 (Announcements are partial) Schema (p)T is in-
valid. O

Proof In an epistemic state where ¢ is false, (p)T is false as well. (In other
words: truthful public announcements can only be made if they are indeed
true.) O

The setting in Proposition 4.11 is not the only way in which the partiality
of announcements comes to the fore. This will also show from the interac-
tion between announcement and negation, and from the interaction between
announcement and knowledge.

Proposition 4.12 (Public announcement and negation)
[p]—1b = (p — —[@]e) is valid. .

In other words: [¢]—1) can be true for two reasons; the first reason is that ¢
cannot be announced. The other reason is that, after the announcement was
truthfully made, 1 is false (note that =[] is equivalent to (¢)—1)). The proof
is left as an exercise to the reader. The various ways in which announcement
and knowledge interact will be addressed separately, later.
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Proposition 4.13 All of the following are equivalent:

o p—[plY
o o— ()Y
e [ply O

Proof As an example, we show that ¢ — [p]y) is equivalent to [¢]¢. Let M
and s be an arbitrary model and state, respectively. Then—in great detail:

M,s =@ — [l
=

M, s = ¢ implies M, s =[]y

54

M, s = ¢ implies ( M, s |= ¢ implies M|p, s =1 )
4

(M,sl=pand M,s| ¢ ) implies M|p,s =1
=

M, s |= ¢ implies M|p, s =
=

M, s |= [g]¢ O
Proposition 4.14 All of the following are equivalent:

()
o VA (P
o wA[plY O

The proof of Proposition 4.14 is left as an exercise.

Exercise 4.15 Show that the converse of Proposition 4.10 does not hold.
(Hint: choose an announcement formula ¢ that is false in a given epistemic
state.) O

Exercise 4.16 Prove the other equivalences of Proposition 4.13, and prove
the equivalences of Proposition 4.14. (The proof above shows more detail than
is normally required.) a

Instead of first saying ‘@’ and then saying ‘@)’ you may as well have said
for the first time ‘@ and after that ¢’. This is expressed in the following
proposition.

Proposition 4.17 (Public announcement composition)
[ A @]l is equivalent to [][u]x. O

Proof For arbitrary M, s:

s € M|(p A [ply)
=

M,s =@ Aplt
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-~

M,s=pand ( M,s | ¢ implies M|p,s =)

4

s € Mlp and Mlp,s k=1

54

s € (M)l u

This property turns out to be a useful feature for analysing announcements
that are made with specific intentions: those intentions tend to be postcondi-
tions ¢ that supposedly hold after the announcement. So if an agent a says
@ with the intention of achieving 1, this corresponds to the announcement
Koo N [Kap)Ka1. Section 4.12 will give more concrete examples. The validity
[0 A [e]]x < [][¥]x is in the axiomatisation. It is the only way to reduce
the number of announcements in a formula, and therefore an essential step
when deriving theorems involving two or more announcements.

How does knowledge change as the result of an announcement? The relation
between announcements and individual knowledge is still fairly simple. Let us
start by showing that an announcement does make a difference: [¢] K, is not
equivalent to K, [p]y. This is because the epistemic state transformation that
interprets an announcement is a partial function. A simple counterexample of
[P]Katp < K|l is the following. First note that in (Heza,012) it is true
that after every announcement of ‘Anne holds card 1’, Cath knows that Anne
holds card 0. This is because that announcement cannot take place in that
epistemic state. In other words, we have that

Heza, 012 = [1,]K.0,

On the other hand, it is false that Cath knows that after the announcement
of Anne that she holds card 1 (which she can imagine to take place), Cath
knows that Anne holds card 0. Instead, Cath then knows that Anne holds
card 1! So we have

Hezxa, 012 = K.[1,]0,

We now have shown that

e (o] Kot < K[l

An equivalence holds if we make [p] K, conditional to the executability of
the announcement, thus expressing partiality.

Proposition 4.18 (Public announcement and knowledge)
[p] Kot is equivalent to ¢ — K,[p]v. O

Proof

M,s = ¢ — Kq|plt
=

M, s | o implies M, s = K[



80 4 Public Announcements

-~

M, s |= ¢ implies (forallt € M : s ~, t implies M,t = [p]) )

=

M,s |E ¢ implies (forallt € M : s ~, t implies ( M, t = ¢ implies
Mgt 1))

54

M,s = ¢ implies (forallt € M : M,t |= ¢ and s ~, t implies M|p,t |=
¥)

=

M, s |= ¢ implies ( for all t € M|p, s ~, t implies M|p,t =1 )

=4

M, s = ¢ implies M|p,s = K¢

-~

M.s = [p] Kot O

The interaction between announcement and knowledge can be formulated
in various other ways. Their equivalence can be shown by using the equivalence
of ¢ — []Y to [p]w, see Proposition 4.13. One or the other may appeal most
to the intuitions of the reader.

Proposition 4.19 All valid are:

o [p]K < (p — KulolY) (Proposition 4.18)

o (PKaY < (N Kale — (9)¥))

o (P)Kuh = (p A Ku(p)) [
For an example, we prove the third by use of the first.

Proof R

M, s = (o) Kat)

& duality of modal operators

M, s | —[p| Koy

< by Proposition 4.18

M, s = —(p — Ka[p] )

& propositional

M,s = @ A —~Kale]~¢

& duality

M,s = o A Ko (o)

Therefore, M,s = (p)K.p « (¢ /\AIA(G<QD>’£ZJ). As this was for an arbitrary
model and state, it follows that (p)K,1 < (p A Ky {p)®) is valid. O

Exercise 4.20 Show the second equivalence in Proposition 4.19. g

Exercise 4.21 Investigate whether it is true in the two-state epistemic state
of Example 4.1 that (p A ~Kpp) Ko Kp—p. O

For all operators except common knowledge we find equivalences similar
to the ones we have already seen. Together they are
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Proposition 4.22

[¢lp = (p—p)

[Pl Ax) < ([lY Alplx)

[s@](w —x) < ([plY — [¢lx)

[e] = (o — =[plY)

[P]Katp < (¢ — Kalp]t)

[Pl [¥]x = [o A [plY]x O

Simple proofs are left to the reader. Note the surprising equivalence for the
case —. Together, these validities conveniently provide us with a ‘rewrite
system’ that allows us to eliminate announcements, one by one, from a for-
mula in the language L, resulting in an equivalent formula in the language
L, without announcements. In other words, in the logic PA ‘announce-
ments are not really necessary’, in a theoretical sense. This will also be useful
towards proving completeness. Chapters 7 and 8 present these matters in
detail.

In a practical sense, having announcements is of course quite useful: it
may be counterintuitive to specify dynamic phenomena in a language without
announcements, and the descriptions may become rather lengthy. Remember
your average first course in logic: a propositional logical formula is equivalent
to a formula that only uses the ‘Sheffer Stroke’ (or NAND). But from the
perspective of readability it is usually considered a bad idea to have formulas
only using that single connective.

When we add common knowledge to the language, life becomes harder.
The relation between announcement and common knowledge, that will be
addressed in a separate section, cannot be expressed in an equivalence, but
only in a rule. In particular—as we already emphasised—announcing ¢ does
not make it common knowledge.

Exercise 4.23 Prove the validities in Proposition 4.22. O

Exercise 4.24 Given that — is defined from — and A in our inductively
defined language, what is [¢] (1) — Xx) equivalent to, and how does this outcome
relate to the validity [o](v — x) < ([¢] — [¢]x) that was established in
Proposition 4.227 What principle would one ‘normally’ expect for a ‘necessity’-
type modal operator? a

Exercise 4.25 Show that (@)= < (@ A = {p))) is valid. O

4.6 Announcement and Common Knowledge

A straightforward generalisation of [p|K,1 < (¢ — K,[¢|w), the principle
relating announcement and individual knowledge, is [p]Caty < (¢ —
Calpltp), but this formula scheme is invalid. Consider the instance
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11l—a—01—5>b—10 E 11 10

Figure 4.4. After the announcement of p, ¢ is common knowledge. But it is not
common knowledge that after announcing p, ¢ is true.

[PICabg < (p — Cuplplq) of the supposed principle. We show that the
left side of this equivalence is true, and the right side false, in state 11 of the
model M on the left in Figure 4.4. In this model, let 01 the name for the
state where p is false and ¢ is true, etc.

We have that M, 11 |= [p]Capq because M|p,11 = Cupq. The model M|p is
pictured on the right in Figure 4.4. It consists of two disconnected states.
Obviously, M|p,11 = Cuq, because M|p,11 = ¢ and 11 is now the only
reachable state from 11. On the other hand, we have that M,11 }£ p —
Cuplplg, because M, 11 = p but M, 11 j= Cyp[plg. The last is, because 11 ~gp
10 in M (because 11 ~, 01 and 01 ~;, 10), and M, 10 [~ [p]g. When evaluating
q in M|p, we are now in its other disconnected part, where ¢ is false: M|p,

10 F£ q.

Fortunately there is a way to get common knowledge after an announcement.
The principle for announcement and common knowledge will also be a deriva-
tion rule in the axiomatisation to be presented later.

Proposition 4.26 (Public announcement and common knowledge)
If x — [¢]Y and (x A ¢) — Epx are valid, then x — [p]Cp) is valid. O

Proof Let M and s be arbitrary and suppose that M,s | x. We have to
prove that M, s = [¢]Cpv. Therefore, suppose M, s = ¢, and let ¢ be in the
domain of M|y such that s ~p ¢, i.e., we have a path from s to ¢ for agents
in B, of arbitrary finite length. We now have to prove that M|y, t = 1. We
prove this by induction on the length of that path.

If the length of the path is 0, then s = ¢, and M|y, s = 9 follows from the
assumption M, s = x and the validity of x — [¢]i). Now suppose the length of
the path is n+1 for some n € N, with—for a € B and u € M|p—s ~, u ~p t.
From M, s = x and M, s = ¢, from the validity of (x A ¢) — EpX, and from
s ~q u (we were given that u € M|y, therefore u is also in the domain of
M), it follows that M,u = x. Because u is in the domain of M|y, we have
M,u = ¢. We now apply the induction hypothesis on the length n path such
that u ~p t. Therefore M|p,t = 1. O

The soundness of the principle of announcement and common knowledge
is depicted in Figure 4.5. The following informal explanation also drawing on
that visual information may help to grasp the intuition behind it.

First, note that x — [¢]v is equivalent to x — (¢ — [¢]¥) which is equiv-
alent to (x A ¢) — [p]y. This first premiss of ‘announcement and common
knowledge’ therefore says that, given an arbitrary state in the domain where
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Figure 4.5. Visualisation of the principle relating common knowledge and an-
nouncement.

x and ¢ hold, if we restrict the domain to the ¢-states—in other words, if we
do a -step, then 1 holds in the resulting epistemic state. The second premiss
of ‘announcement and common knowledge’ says that, given an arbitrary state
in the domain where x and ¢ hold, if we do an arbitrary a-step in the domain,
then we always reach an epistemic state where x holds. For the conclusion,
note that xy — [¢]Cpv is equivalent to (x A ¢) — [¢]Cp1. The conclusion
of ‘common knowledge and announcement’ therefore says that, given an arbi-
trary state in the domain where x and ¢ hold, if we do a (-step followed by a
B-path, we always reach a 1-state. The induction uses, that if we do a y-step
followed by an a-step, the diagram ‘can be completed’, because the premisses
ensure that we can reach a state so that we can, instead, do the a-step first,
followed by the y-step.

Corollary 4.27 Let the premisses for the ‘announcement and common know-
ledge’ rule be satisfied. Then every B-path in the model M|p runs along
1-states. O

In other words: every B-path in M that runs along ¢-states (i.e., such that
in every state along that path ¢ is satisfied) also runs along [p]i-states. In
view of such observations, in Chapter 7 we call such paths Bp-paths .

The following Corollary will be useful in Section 4.7.

Corollary 4.28 [p]1 is valid iff [p]Cpe) is valid. O

Proof From right to left is obvious. From left to right follows when taking
x = T in Proposition 4.26. 0

Exercise 4.29 An alternative formulation of ‘announcement and common
knowledge’ is:

If (x A @) — [p] A Egy is valid, then (x A ¢) — [¢]Cp is valid.

Show that this is equivalent to ‘announcement and common knowledge’. (Hint:
use the validity [¢']¢” < (¢ — [¢']¥")). O
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Exercise 4.30 If x — [y is valid, then x — [p]Cp® may not be valid.
Give an example. O

4.7 Unsuccessful Updates

Let us recapitulate once more our deceptive communicative expectations. If
an agent truthfully announces ¢ to a group of agents, it appears on first
sight to be the case that he ‘makes ¢ common knowledge’. In other words, if
© holds, then after announcing that, C'a¢ holds, i.e.: ¢ — [p]Cap is valid.
As we have already seen at the beginning of this chapter, this expectation
is unwarranted, because the truth of epistemic parts of the formula may be
influenced by its announcement. But sometimes the expectation is warranted:
formulas that always become common knowledge after being announced, will
be called successful. Let us see what the possibilities are.

After announcing ¢, ¢ sometimes remains true and sometimes becomes
false, and this depends both on the formula and on the epistemic state.
We illustrate this by announcements in the epistemic state of introductory
Example 4.1, where from two agents Anne and Bill, Anne knows the truth
about p but Bill does not. This epistemic state can be formally defined as
(L,1), where model L has domain {0, 1}, accessibility relation for agent a is
~a = {(0,0),(1,1)} or the identity on the domain, accessibility relation for
agent b is ~, = {(0,0),(1,1),(0,1),(1,0)} or the universal relation on the
domain, and valuation V, = {1}.

If in this epistemic state (L, 1) Anne says, truthfully: “I know that United
Agents is doing well”, then after this announcement K,p, it remains true that
K.p:

L1 [Kop|Kap

This is, because in L the formula K,p is true in state 1 only, so that the model
L|K,p consists of the singleton state 1, with reflexive access for a and b. It
also becomes common knowledge that Anne knows p: we have

L,1 ): [Kap]oabKap

and a fortiori
La 1 ': Kap - [Kap]cabKap

Indeed, this formula can easily be shown to be valid
): Kap - [Kap]cabKap

Instead, in epistemic state (L,1) Anne could have said to Bill, just as in
Example 4.1: “You don’t know that United Agents is doing well”. Using the
conversational implicature that that fact is true, this is an announcement of
Ku(p A —Kpp). (This time we express explicitly that Anne knows what she
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Ka(p A =Kypp)

Figure 4.6. A simple unsuccessful update: Anne says to Bill “(p is true and) you
don’t know that p.”

says—the result is the same as for p A =Kp.) It also only succeeds in state 1.
After it, Bill knows that p, from Kpp follows —p V Kp, which is equivalent to
—(p A —Kpp), therefore K,(p A ~Kpp) is no longer true

L1 [Ko(p A ~Kpp)|~Ka(p A ~Kpp)
and so it is certainly not commonly known, so that
e Ko(p A —EKyp) = [Ka(p A =Kup)|Cap Kalp A —Kyp)

The epistemic state transition induced by this update is visualised (once more)
in Figure 4.6.

Incidentally, [K,(p A ~Kpp)]|—Ka(p A ~Kpp) is even valid, but that seems
to be less essential than that we have found an epistemic state (L, 1) wherein
the formula K,(p A = Kpp) is true and becomes false after its announcement.

Definition 4.31 (Successful and unsuccessful formulas and updates)
Given a formula ¢ € Licp and an epistemic state (M, s) with M € S5.

v is a successful formula iff [p]y is valid.

@ is an unsuccessful formula iff it is not successful.

@ is a successful update in (M, s) if M,s = (o)

@ is an unsuccessful update in (M, s) iff M, s = (@)—p

In the definitions, the switch between the ‘box’ and the ‘diamond’ versions
of announcement may puzzle the reader. In the definition of a successful for-
mula we really need the ‘box’-form: clearly (¢)¢p is invalid for all ¢ except
tautologies. But in the definition of a successful update we really need the
‘diamond’-form: clearly, whenever the announcement formula is false in an
epistemic state, [¢]-¢ would therefore be true. That would not capture the
intuitive meaning of an unsuccessful update, because that is formally repre-
sented as a feature of an epistemic state transition. We must therefore assume
that the announcement formula can indeed be truthfully announced.
Updates with true successful formulas are always successful, but sometimes
updates with unsuccessful formulas are successful. By ‘always’ (‘sometimes’)
we mean ‘in all (some) epistemic states’. The truth of the first will be obvious:
if a successful formula ¢ is true in an epistemic state (M, s), then @A[p]e which
is equivalent to {p)y is also true in that state, so it is also a successful update.
One can actually distinguish different degrees of ‘success’, that also nicely
match somewhat tentative distinctions made in the literature. For example,
one can say that ¢ is individually unsuccessful in (M, s) iff M, s = (@) K,—.
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The following Proposition states that at least for validities such distinctions
do not matter. It is an instance of Corollary 4.28 for B = A and ¢ = .

Proposition 4.32 Let ¢ € Licp. Then [¢]p is valid if and only if [¢]Ca¢
is valid. 0

However, note that [¢]p is not logically equivalent to [p]Ca¢. Using Proposi-
tion 4.13 that states the logical equivalence of [p]¢ and ¢ — [¢]y we further
obtain that.

Proposition 4.33 [p]p is valid if and only if ¢ — [¢]Ca¢ is valid. O

This makes precise that the successful formulas ‘do what we want them to
do’: if true, they become common knowledge when announced.

It is not clear what fragment of the logical language consists of the suc-
cessful formulas. There is no obvious inductive definition. When ¢ and 1 are
successful, =, © A, ¢ — 1, or [p]1) may be unsuccessful.

Example 4.34 Formula p A =K,p is unsuccessful, but both p and ~K,p are
successful. This can be shown as follows:

For p it is trivial. For =K,p it is not. Let M, s be arbitrary. We have to
prove that M, s = [-K,p]-K.p, in other words, that M, s | —K,p implies
M|-Kup,s |E ~Kup. Let M,s = —K,p. Then there must be a t ~, s such
that M,t = —p, and therefore also M, ¢ = ~K,p, and therefore t € M|-K,p.
From s ~, t in M|=K,p and M|-K,p,t = —p follows M|-K,p, s E —~K,p.O

Exercise 4.35 Give a formula ¢ such that ¢ is successful but —¢ is not
successful. Give formulas ¢, 1 such that ¢ and 1 are successful but ¢ — 1 is
not successful. Give formulas @, such that ¢ and 4 are successful but [p]y
is not successful. O

There are some results concerning successful fragments. First, public know-
ledge formulas are successful:

Proposition 4.36 (Public knowledge updates are successful) Let
¢ € Lxcp(A, P). Then [Cap]Cap is valid. O

Proof Let M = (S,~,V) and s € S be arbitrary. The set [s]., denotes the
~ g-equivalence class of s—below, we write M|[s]. , for the model restriction
of M to [$]~,-

We first show that, for arbitrary ¢: M, s = ¢ iff M|[s]~,,s E ¥ (1). We
then show that, if M, s = Caep, then [s]., C [Cag]a (2). Together, it follows
that M, s |= Cayp iff M|[s]~,,s = Cap, and that M|[s]~,,s = Cap implies
M|Cap,s = Cap. By definition, “M,s = Cap implies M|Cap,s = Cap”
equals M, s = [Cap]Cap.

(1) Observe that M is bisimilar to M]|[s]., via the bisimulation relation
R C [s]w, xS defined as (t,t) € R for all t € [s].,. Subject to this bisim-
ulation, we have that (M, s)< (M|[s]~,,s). This is merely a special case of
invariance under generated submodel constructions.
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(2) Assume that M,s = Cap. Let s ~4 t. Using the validity Cap —
CaCyp, we also have M,t = Cap. In other words: [s]., C [Cap]ar- O

Although [Cap]Ca¢ is valid, this is not the case for arbitrary B C A.
Consider the standard example (L, 1) where Anne can distinguish between p
and —p but Bill cannot. We then have that [Cpp|Cpyp is false in this model
for B = {a} and ¢ = p A ~Kjp.

By announcing a public knowledge formula, no accessible states are deleted
from the model. Obviously the truth of formulas can only change by an
announcement if their truth value depends on states that are deleted by the
announcement. We will now show that formulas from the following fragment
‘C(I)(C[] (A, P) (of the logical language Ly (4, P)) of the preserved formulas,
with inductive definition

pu=p|lploApleVe | K| Cpy | [-plp

are truth preserving under ‘deleting states’. From this, it then follows that
the fragment is successful. Instead of ‘deleting states’, we say that we restrict
ourselves to a submodel : a restriction of a model to a subset of the domain,
with the obvious restriction of access and valuation to that subset.

Proposition 4.37 (Preservation) Fragment E?{C[](A’ P) is preserved
under submodels. O

Proof By induction on E?{C[} (A, P). The case for propositional variables,
conjunction, and disjunction is straightforward.

Let M = (S,~,V) be given and let M’ = (S’,~', V') be a submodel of
it. Suppose s € S’. Suppose M,s = Kyp. Let s € S’ and s ~, s’. Then
M,s" = . Therefore, by the induction hypothesis, M’ s’ = ¢. Therefore
M’,s = K,p. The case for Cpyp is analogous.

Suppose M, s = [~]ip. Suppose, towards a contradiction, that M’ s =
[—¢]t. Therefore, by the semantics, M, s = —p and M'|—p, s = 1. Therefore,
by using the contrapositive of the induction hypothesis, also M,s | —p.
Moreover M'|—y is a submodel of M|—yp, because a state t € S” only survives
if M’ t | -, therefore by the induction hypothesis M, t = —¢. So [-~¢]ar C
[—¢]ar- But from M, s = [~y (which we assumed) and M, s = —¢p follows
M|=p, s |= 1, therefore by the induction hypothesis also M'|—p, s = 1. This
contradicts our earlier assumption. Therefore M’ s = [—p]t). O

Corollary 4.38 Let ¢ € £(IJ(C[] (A,P) and ¥ € Lgcp(A, P). Then ¢ — [{]p
is valid. 0

This follows immediately from Proposition 4.37, because restriction to -
states is a restriction to a submodel.

Corollary 4.39 Let ¢ € E(}{CH (A, P). Then ¢ — [¢p]y is valid. O

In particular, restriction to the (p-states themselves is a restriction to a sub-
model.
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Corollary 4.40 (Preserved formulas are successful)
Let ¢ € E(])(CH (A, P). Then [¢p]yp is valid. O

This follows from Corollary 4.39 and Proposition 4.13.

Some successful formulas are not preserved, such as —K,p, see above.
There are more successful than preserved formulas, because the entailed
requirement that ¢ — [¥]p is valid for arbitrary v is much stronger than
the requirement that ¢ — [p]e is valid. In the last case we are only looking at
the very specific submodel resulting from the announcement of that formula,
not at arbitrary submodels.

A last ‘partial’ result states the obvious that

Proposition 4.41 Inconsistent formulas are successful. O

Exercise 4.42 In (Heza,012), Anne says to Bill: “(I hold card 0 and) You
don’t know that I hold card 0”. Show that this is an unsuccessful update.
In the resulting epistemic state Bill says to Anne: “But (I hold card 1 and)
you don’t know that I hold card 1”. Show that that is also an unsuccessful
update. O

Exercise 4.43 In (Heza,012), an outsider says to the players: “It is general
but not common knowledge that neither 201 nor 120 is the actual deal.” Show
that this is an unsuccessful update. O

4.8 Axiomatisation

We present both a Hilbert-style axiomatisation PA for the logic PA of pub-
lic announcements without common knowledge operators, and an extension
PAC of that axiomatisation for the logic PAC of public announcements (with
common knowledge operators). For the basic definitions and an introduction
in axiomatisations, see Chapter 2.

4.8.1 Public Announcement Logic without Common Knowledge

Definition 4.44 (Axiomatisation PA)

Given are a set of agents A and a set of atoms P, as usual. Table 4.1 presents
the axiomatisation PA (or PA(A, P), over the language Lk (A, P)); a € A
and p € P. O

Example 4.45 We show in PA that - [p|K,p. By the justification ‘proposi-
tional” we mean that the step requires (one or more) tautologies and applica-
tions of modus ponens—and that we therefore refrain from showing that in
cumbersome detail.
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all instantiations of propositional tautologies

Ko(p — ) — (Kop — Ko1)) distribution of K, over —
Kop— truth

Kop — KoKap positive introspection

“Kaop — Ko Kap negative introspection

[¢lp < (¢ — p) atomic permanence

[l < (¢ — =[pl) announcement and negation
[l(¥ A x) < ([l A lplx) announcement and conjunction
[p] Kot < (¢ — Ka[p]¥) announcement and knowledge
[el[¥]x < [@ A lpl¥]x announcement composition
From ¢ and ¢ — 9, infer ¢ modus ponens

From ¢, infer K,p necessitation of K,

O Otk W=

Table 4.1. The axiomatisation PA.

p—p tautology
[plp < (p — p) atomic permanence
[plp 1,2, propositional
K [plp 3, necessitation
p — Kaplp 4, propositional
[P Kup < (p — Kaplp) announcement and knowledge
[P|Kap 5,6, propositional

The following proposition lists some desirable properties of the axiomati-
sation—the proofs are left as an exercise to the reader.

Proposition 4.46 Some properties of PA are:

1.

Substitution of equals
If 9 < x, then - o(p/¥) < ¢(p/X).

. Partial functionality

F (o = [pl) < [l

. Public announcement and implication

F el — x) < (el — [elx) [

Exercise 4.47 Prove that the schema ()1 — [p]t) is derivable in PA. (This
is easy.) O

Exercise 4.48 Prove Proposition 4.46.1. (Use induction on the formula ¢.)O

Exercise 4.49 Prove Proposition 4.46.2. (Use induction on the formula 1. It
requires frequent applications of Proposition 4.46.1.) O

Exercise 4.50 Prove Proposition 4.46.3. (Use the equivalence ‘by definition’

of

¢ — b and =(p A ).) O
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Theorem 4.51 The axiomatisation PA (A, P) is sound and complete. O

To prove soundness and completeness of the axiomatisation PA for the
logic PA, we need to show that for arbitrary formulas ¢ € Lg: = ¢ iff F .
The soundness of all axioms involving announcements was already established
in previous sections. The soundness of the derivation rule ‘necessitation of
announcement’ is left as an exercise to the reader. The completeness of this
axiomatisation is shown in Chapter 7.

Exercise 4.52 Prove that the derivation rule ‘necessitation of announce-
ment’, “from ¢ follows [¢]¢”, is sound. O

4.8.2 Public Announcement Logic

The axiomatisation for public announcement logic PAC with common know-
ledge is more complex than that for public announcement logic PA without
common knowledge. The axiomatisation PAC (over the language L cyy) con-
sists of PA plus additional axioms and rules involving common knowledge. For
the convenience of the reader, we present the axiomatisation in its entirety.
The additional rules and axioms are at the end. In these rules and axioms,
B C A.

Definition 4.53 (Axiomatisation PAC)

The axiomatisation PAC (or PAC(A, P)) is defined in Table 4.2. O
all instantiations of propositional tautologies
Ko(p — ) — (Ko — Katp) distribution of K, over —
K.p— ¢ truth
Koo — K. Kqp positive introspection
Koo — Ko~ Kap negative introspection
[elp (go — p) atomic permanence
[p]= < (¢ — —[p]Y) announcement and negation
(] (7,/1 /\ X) ([]Y A [e]x) announcement and conjunction
[p] Kot < (¢ — Kalpt) announcement and knowledge
[p][¥ }X = [0 A [el¥]x announcement composition
Ce(p — ¢) — (Cpp — CpY) distribution of Cg over —
Cpp — (0o NECgpyp) mix of common knowledge
Cs(¢ — Egp) — (p — Ciyp) induction of common knowledge
From ¢ and ¢ — 9, infer ¢ modus ponens
From ¢, infer Kqp necessitation of K,
From ¢, infer Cpyp necessitation of Cp
From ¢, infer [¢]e necessitation of [¢]
From x — [p]Y and x A ¢ — EBX, announcement and
infer x — [¢]CBY common knowledge

Table 4.2. The axiomatisation PAC.



