
Words are wind ; learning is nothing but words ;

ergo, learning is nothing but wind .
- Jonathan Swift

Donald Hebb was not a neural network researcher in 1949 when he

proposed his model for biological learning . He was a psychologist
whose immediate goal was to understand how neurons in the brain

change when learning occurs. His model was quickly picked up by
neural network researchers, however .

Those seeking a new neural network design often adopt the
ideas of biologists or psychologists. The reason, of course, is that it
makes sense to copy a system already known to be successful- the
brain . Of all the learning concepts appropriated from psychology by
neural network researchers, hebbian learning is probably the best
known and most used. The original statement of Hebb's law reads as
follows : "When an axon of cell A is near enough to excite a cell B and

repeatedly or persistently takes part in firing it , some growth process
or metabolic change takes place in one or both cells such that ~ ' s efficiency

, as one of the cells firing B, is increased." II-

We will see that this deceptively simple statement is remarkable
in its implications . It provides nearly all we need to know about

.learning to make useful neural networks . Hebb is saying that a neuron
, A, that repeatedly happens to stimulate another neuron, B, at

the times when B is firing , will have an increased effectiveness in

.. D. O. Hebb, The Organization of Behavior, (New York: Wiley, 1949),
p. 62. .
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stimulating B to fire in the future . If we translate this into I Ineurodes"

and "
weights,

" we c~n restate Hebb's law as follows : If neurode A
repeatedly stimulates neurode B while B is generating an output signal

, the weight of the synapse between A and B will increase in
magnitude .

The net effect of this process is that the strength of the interconnect 
from A to B increases. This implies that neurode B will become

more sensitive to neurode A 's stimulus after appropriate training has
occurred. During training , we sensitize the network 's response to
signals passing along certain pathways.

There are a number of details that are not addressed by this simple 
statement of Hebb's law, and it must usually be modified to be

useful in actual neural network implementations . In the mid -1950s,
when researchers began writing computer simulations of hebbian
systems to determine their ability to learn, the inadequacy of the law
for computational purposes quickly became apparent. For example,
as the law is stated, the weights on the interconnects can rise without
an upper bound ; they can potentially rise to infinity . This kind of
limitless growth , of course, is anathema to computer simulations . As
a result, hebbian learning rules often have the additional constraint
imposed on them that the weights of each neurode must benormal -
ized; that is, the weight vector is constrained to have a fixed, constant 

length . This length is usually set to 1.0.
The impact of this constraint goes beyond the simple matter of

confining the growth of the weights to manageable bounds. Assume
that a particular neurode has several input interconnections and
weights and that one of these weights is increased during training . If
the neurodeis to maintain a fixed-length weight vector while one of
the weights increases, then one or more of the other weights must
decrease. Because this decrease can come only from an interconnect
that is not currently stimulating the neurode, the constraint effectively 

requires that a synapse that is consistently not stimulated
when the neurode fires will gradually decrease in strength during
training . Eventually this weight may even wither to a zero value.
Here we have the neural network equivalent of "use it or lose it ."

This is not the only modification of Hebb's law that is needed to
use it as a neural network learning rule . We must provide for both
positive and negative interconnect weights - excitatory and inhibitory 

synapses. With this feature, a positive stimulus from neurode A
can have the effect of increasing or decreasing the tendency of neu-
rode B to fire . Another way of saying this is that allowing negative
interconnect weights permits inhibition as well as excitation of the
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stimulated neurode. Of course, this feature is also needed for it to be
biologically accurate.

One way of accomplishing this is to alter our normalization procedure 
slightly . By picking the limits of the weights to be - 1.0 and

+1.0, and adding anyone of several mathematical conditions that
force the length of the weight vector to be equal to 1.0, we can provide 

for both inhibitory and excitatory synapses and for reduction as
well as growth of weights during training .

Neohebbian Learning
One of the classical mathematical expressions of hebbian learning 
was produced by Stephen Grossberg in the mid -1960s. This version 
is sometimes called neohebbian learning because it expands the

original statement of Hebb's law and provides an explicit mathematical 
model for Hebb's weight change rule .
The neohebbian model accounts for the fact that biological systems 

not only learn but also forget. This feature is essential if we
want to explain the behavior of biological systems. At first glance,
forgetting may not seem to be a useful feature in a learning model
for artificial systems, but that is often not the case. It can be useful,
for instance, to avoid overcrowding memory with seldom used
detail or to correct mistakes in previously learned information .

To put it in its normal context, we'll state Grossberg' s neoheb-
bian weight change law as a computational rule . Before we actually
state the role, we need to talk a little about the stepwise manner in
which such computations, or simulations, are made. Assume that we
have presented an input pattern to the neural network and must
now change the weights on each neurode so that it can begin learning 

the input pattern . In computations of this sort, we move the state
of the network forward in small time increments; that is, we
calculate the activity and value of the output for every neurodeand
update the weight of every synapse for one instant of time before
moving on to the next instant. Because of this iterative procedure, we
can state the law for only one neurode pair and apply it in turn to
each synapse of each neurode. Let' s assume that the synapse to be
updated lies on neurode B, which receives output signals from neu-

. rode A . Since we are dealing with only one pair of neurodes, the output 
of neurode A in this case is unambiguously the input to neurode

B, and we will use "output of neurode A" and " input to neurode B"

synonymously in this discussion.
The content of this law can be summarized by writing it as a

Hebbian Leaming

125

Downloaded from http://direct.mit.edu/books/book/chapter-pdf/275565/9780262270069_cao.pdf by INDIANA UNIV LIBRARIES user on 25 June 2025



word equation. In this form , it is
<new weight > =

<old weight >
- F <amount forgotten between last and current cycle>
+ L <new learning in this cycle>

Here, F and L are both constants that are in the range of 0 to 1.0. The
constant F controls how quickly the network forgets, and L controls
how quickly it learns.

. Let' s look at this rule for some special values of the forgetting
and learning constants. First, if neither forgetting nor learning occurs
(both F and L are zero in other words ), the new weight value is the
same as the old one; nothing is forgotten , and nothing is learned. If
the forgetting constant, F, is very large, the hebbian term results in a
new weight value, but the old weight is completely forgotten ; nothing 

is retained from cycle to cycle. A very small value for F implies
that little or no forgetting occurs. If the learning constant, L, is zero,
the fraction of the old weight determined by the forgetting constant
is retained, but no new changes are made. No learning takes place.

Finally , the relative values of the forgetting and learning constants

pick the relative importance of new and old knowledge .
The third term of this statement, the hebbian learning term, i~

just a computational statement of Hebb's law . It tells us that if both
the incoming stimulus and the output of a neurodeare large at the
same time, the weight change of the affected synapse will be large
and a lot of learning will occur. If , on the other hand, either the stimulus 

or the output is small or zero, little or no weight change will be
made, and little or no learning will occur. Only when an input stimulus 

from neurode A coincides with an output from neurode B will

learning occur.
Neohebbian learning does not resolve all the problems of heb-

bian learning; it merely provides a mathematical framework for the

original concept and introduces the phenomenon of forgetting . It still
. 
has no way of dealing with inhibitory stimuli , so it does not model

biological systems accurately. Neohebbian learning did , however, act
as a precursor to Grossberg' s later outstar learning paradigm .

Chapter 9
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In our discussion of simple hebbian learning , we had to introduce
two features found in biological systems that are necessary for

proper operation of a neural network : the possibility of both decreas-
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Hebbian Learning

ing and increasing weights during learning and the presence of
inhibitory as well as excitatory synapses. In differential hebbian
learning, we finally have a learning system that provides both of
these features in a natural way . In differential hebbian learning, the
learning term of the weight change rule is not proportional to the
product of the input and output signals of neurode B but instead is
proportional to the product of the rates of change in those signals. In
mathematical terms, the expression 

"rate of changel
/ refers to the

derivative of a Deurode's output with respect to time.
Under this law, if the input signal from neurode A to neurode B

increases in strength (a positive change) at the same time that the
output signal of neurode B decreases in strength (a negative change),
then their product is negative, and the weight itself becomes more
negative. If the input signal decreases at the same time that the output 

signal increases, the product is similarly negative and the weight
again becomes more negative. Only when both the input and the
output signals increase or decrease at the same time is their product
positive, and only under these circumstances will the weight
increase and become more positive .

Differential hebbian learning at last provides us with a learning
rule that can model a number of aspects of learning in biological systems 

with considerable accuracy. It is often the basis for neural network 
simulations today but rarely in this pure form . It has also

inspired a variety of modifications to other network paradigms. For
example, there is a version <;>f backpropagation, called backpropaga-
tion with recirculation , that uses a differential hebbian learning
approach.

Let' s look at how classical conditioning is applied in artificial
neural networks by discussing two network learning paradigms, the
outstar and the drive reinforcement learning models. Both use a
form of hebbian learning .
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