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ARTICLE INFO ABSTRACT

Keywords: Artificial Neural Networks (ANNs) are powerful computational models that are able to reproduce
Symbolic/sub-symbolic/hybrid artificial complex non-linear processes, and are being widely used in a plethora of contemporary disciplines.
intelligence In this article, we study the statics and dynamics of a certain class of ANNs, called binary
Artificial Neural Networks ANNs, from the perspective of belief-change theory. A binary ANN is a feed-forward ANN
AGM belief change

whose inputs and outputs take binary values, and as such, it is suitable for a wide range of
practical applications. For this type of ANNs, we point out that their knowledge (expressed
via their input-output relationship) can symbolically be represented in terms of a propositional
logic language. Furthermore, in the realm of belief change, we identify the process of changing
(revising/contracting) an initial belief set to a modified belief set, as a process of a gradual
transition of intermediate belief sets — such a gradualist approach to belief change is more
congruent with the behaviors of real-world agents. Along these lines, we provide natural metrics
for measuring the distance between these intermediate belief sets, effectively quantifying the
disparity in their encoded knowledge. Thereafter, we demonstrate that, similar to belief change,
the training process of binary ANNs, through backpropagation, can be emulated via a sequence
of successive transitions of belief sets, the distance between which is intuitively related through
one of the aforementioned metrics. We also prove that the alluded successive transitions of belief
sets can be modeled by means of rational revision and contraction operators, defined within the
fundamental belief-change framework of Alchourrén, Gérdenfors and Makinson (AGM). Thus, the
process of machine learning (specifically, training binary ANNs) is framed as an operation of AGM-
style belief change, offering a modular and logically structured perspective on neural learning.

Knowledge representation

1. Introduction

Artificial Neural Networks (ANNs) have evolved as a cornerstone in the field of Machine Learning (ML), offering robust solutions
to a plethora of problems across diverse domains, such as image recognition, natural language processing, and autonomous systems
[27,10,47,61,52]. Originating from the ambition to mimic the neuronal structure and functionality of the human brain, ANNs have
transcended their biological inspiration to become powerful computational models. While they are primarily recognized for their
ability to model complex, non-linear relationships through deep-learning architectures, their capacity to encode, manipulate, and
generate symbolic knowledge is an area of burgeoning interest and significant implications [45].

Symbolic knowledge, characterized by structured relationships between symbols that represent abstract concepts, has traditionally
been the domain of rule-based systems [13,71]. However, the integration of symbolic reasoning with sub-symbolic processes, like
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those found in ANNs, promises a new hybrid, neuro-symbolic paradigm that could leverage the strengths of both symbolic Artificial
Intelligence (AI) and neural computation. This convergence is hypothesized to not only enhance the interpretability and transparency
of ANNs, but also to enrich their learning capabilities, by embedding a priori knowledge and logical-reasoning frameworks into their
architectures [21,66].

The investigation of how ANNs can represent and utilize symbolic knowledge —whether through embedding symbolic structures
within the network layers or interfacing with external symbolic systems— has opened a novel research front. Various methodologies
have been explored, including the injection of symbolic rules into ANNs and the extraction of symbolic representations from trained
networks [69,2,70,26]. These approaches aim to create more interpretable models that maintain the adaptability and learning effi-
ciency of traditional ANNs, while enhancing them with the ability to reason over learned representations in a human-understandable
format. Furthermore, the fusion of symbolic and sub-symbolic AI could potentially address some of the inherent limitations of purely
data-driven ANNS, such as their demand for extensive data, vulnerability to adversarial attacks, and difficulty in generalizing from
limited samples. By integrating symbolic knowledge directly into the learning process, ANNs could achieve more robust general-
izations and provide richer explanations of their decisions and behaviors, thus bridging the gap between neural computation and
human-like reasoning [20].

Following a research path that aims at the development of a comprehensive neuro-symbolic Al paradigm, this article studies the
statics and dynamics of a certain family of ANNs —which we shall call binary ANNs— from the perspective of belief-change theory,
a field of study that deals with the process of changing (revising/contracting) beliefs in light of new evidence [24,55,23]. A binary
ANN is a feed-forward ANN with all inputs and outputs consisting of binary values, and as such, it is suitable for a wide range of
practical applications (including, indicatively, image processing and pattern recognition using datasets similar to the benchmark
MNIST dataset [48]). Against this background, the following contributions are provided:

We illustrate how the knowledge of binary ANNs (expressed via their input-output relationship) can symbolically be represented
in terms of a propositional logic language; specifically, by means of a collection of logical theories, also referred to as belief sets.
Furthermore, in the realm of belief change, we identify the process of changing an initial belief set to a modified belief set, as a
process of a gradual transition of intermediate belief sets. Such a gradualist approach to belief change finds substantial support in
research on human development [59,65,72], and is more congruent with the behaviors of real-world agents. Along these lines,
we provide two intuitive Hamming-based metrics for measuring the distance between these intermediate belief sets, effectively
quantifying the disparity in their encoded symbolic knowledge.

Thereafter, we demonstrate that, similar to belief change, the training process of binary ANNSs, through the fundamental back-
propagation algorithm [62], can be emulated via a sequence of successive transitions of belief sets, the distance between which is
naturally related through one of the aforementioned metrics.

We also prove that the alluded successive transitions of belief sets can be modeled by means of rational revision and contraction
operators that implement full-meet belief change [29], a type of change specified within the AGM framework, the fundamental
belief-change paradigm of Alchourrén, Gérdenfors and Makinson [1,24]. In this way, the process of machine learning (specifically,
training binary ANNS) is recast as an operation of AGM-style belief change, offering a modular and conceptually structured
perspective on neural learning.

It is noteworthy that, although extensive research has been dedicated to exploring neuro-symbolic approaches to Al, efforts to
integrate AGM-style belief change into ML systems, as is attempted herein, remain notably sparse. In fact, to the best of our knowledge,
the closest works in the spirit of the present study are those conducted by Coste-Marquis and Marquis [16] and Schwind et al. [63]. In
the former [16], the authors discuss the incorporation of symbolic background knowledge into ML-based classifier systems to enhance
their accuracy and robustness. This incorporation is framed as a belief-change problem, focusing on adapting a Boolean circuit that
mirrors a classifier’s behavior to comply with a certain body of background knowledge. It is shown that conventional belief-change
operations are inadequate for this nuanced task, prompting the introduction of a specialized operation, called rectification — a process
that minimally modifies (“rectifies”) the classifier’s Boolean circuit to ensure compliance with background knowledge while preserving
its classification structure. The article methodically defines rectification operations and investigates their theoretical properties, such
as compliance with principal postulates of belief change (including the AGM ones) and computational implications. Similarly, the
work by Schwind et al. [63] explores editing Boolean classifiers from a belief-change perspective, directly connecting learning for
binary classification and AGM-style revision. The study introduces rational ways of modifying Boolean classifiers when new pieces
of evidence must be incorporated, delineating various rationality postulates inspired by belief-revision principles. This approach also
underscores the need for specialized edit operations to ensure the modified classifiers’ consistency and minimal change.

Moreover, the field of Inductive Logic Programming also takes a symbolic view of ML. Recent work by Morel and Cropper [50]
investigates learning logic programs by explaining their failures, which can be viewed as a form of belief expansion — a related AGM-
style form of belief change in a more complex setting. Evidently, the aforementioned studies, akin to the present work, incorporate
AGM-based belief change into ML models, highlighting a growing interest in the intersection of symbolic belief change and ML.

The remainder of this article is organized as follows: The following section sets the required formal background for our subsequent
discussion. Section 3 introduces basic concepts of the AGM framework, whereas, Section 4 presents the process of belief change as a
gradual transition of beliefs. Section 5 points out how the input-output relationship of binary ANNs can symbolically be represented
by a collection of belief sets. Section 6 briefly discusses backpropagation, the principal method for training feed-forward ANNs.
Thereafter, Section 7 points out that the training of binary ANNSs, through backpropagation, can be emulated via a sequence of
successive transitions of belief sets, which are in turn interrelated through a natural measure of distance. Section 8 proves that the



T. Aravanis International Journal of Approximate Reasoning 183 (2025) 109437

learning process of binary ANNs is AGM-compatible, in the sense that it can be modeled by means of a special type of AGM-style
change operators. The article concludes with a brief conclusion section, which summarizes the established contributions and reports
promising avenues for future research.

2. Formal preliminaries

In this section, we set the formal background required for the forthcoming discussion.

Logic Language: In this study, we shall be working with a propositional language L, built over finitely many propositional variables
(atoms), using the standard Boolean connectives A (conjunction), Vv (disjunction), — (implication), < (equivalence), - (negation),
and governed by classical propositional logic. The finite, non-empty set of all propositional variables is denoted by P. The classical
inference relation is denoted by E. The symbol T denotes an arbitrary tautological sentence of L.

Sentences and Belief Sets: For a set of sentences I of L, Cn(I") denotes the set of all logical consequences of I'; i.e., Cn(I") = {qa el:
Ik (p}. For sentences ¢y, ..., ¢, of L, we shall write Cn(gy, ..., ¢,) as an abbreviation of Cn({(pl, s an})- An agent’s set of beliefs
will be modeled by a theory, also referred to as a belief set. A theory K of L is a set of sentences of L closed under logical consequence;
that is, K = Cn(K). As we shall subsequently introduce formal properties of revision and contraction functions, let us first define the
simpler operation of expansion. Accordingly, for a theory K and a sentence ¢ of L, the expansion of K by ¢, denoted by K + ¢, is
defined as K + ¢ = Cn(K U {@}).

Possible Worlds: A literal is a propositional variable p € P or its complement (negation). For a finite set of literals Q, |Q| denotes the
cardinality of Q. A possible world (abbrev. world) r is an inclusion-maximal consistent set of literals, such that, for any propositional
variable p € P, either p € r or —p € .2 For a propositional variable p and a world r, p € r means that p is assigned t rue in r, whereas,
p & r means that p is assigned false in r. The set of all possible worlds is denoted by M. For a sentence or set of sentences ¢ of L,
[¢] is the set of worlds at which ¢ is true. For the sake of readability, possible worlds will sometimes be represented as sequences
(rather than sets) of literals, and the negation of a propositional variable p will be represented as p, instead of —p.

Preorders: A preorder over a non-empty set M is any reflexive and transitive binary relation on M. A preorder < over M is called
total iff any two elements of M are comparable with respect to <; i.e., for all ,#’ € M, r <+’ or ¥’ <r. The strict part of < is denoted
by <;i.e., r <r' iff r <+’ and ' % r. The indifference part of < is denoted by ~; i.e., r ~ ¥’ iff r <’ and ' < r. The set of all <-minimal
elements of M is denoted by min(M, <); namely,

min(M,ﬁ):{reM:forallr’eM, if ' <r, thenrﬁr’}.

When M contains numbers, we simply write min(M) to denote the minimum number in M.

Boolean Functions: A (n-ary) Boolean function f is a function that maps every possible combination of » input binary variables to a
single binary output (0 or 1); in symbols, f : {0,1}" — {0,1}. An example of a (2-ary) Boolean function is a Boolean function f that
implements the logical operation OR, according to which f(0,0)=0, f(0,1)=1, f(1,0)=1, and f(1,1)=1.

Artificial Neural Networks: A feed-forward Artificial Neural Network (ANN) is a computational model that can be formally specified
through a directed acyclic graph G = (V, E). In this graph, V' represents the set of vertices (neurons/nodes), and E represents the set
of directed edges (connections between neurons). The vertices in V' are organized into distinct, ordered subsets called layers, denoted
as Vy,Vq,...,Vy, where:

* V, is the input layer consisting of input nodes X, ..., X,,.
+ V, is the output layer consisting of output nodes y,...,y,,.
* V1, V,,...,V;_, are the hidden layers consisting of intermediate neurons.

Alayer V;, for [ =0,1,..., L, is a set of neurons such that:

+ For I =0, the neurons in V}, (input layer) receive the external inputs X, ..., X

+ For [ = L, the neurons in V; (output layer) produce the outputs y;, ..., y,,.

« For/=1,2,...,L —1, the neurons in V; (hidden layers) receive inputs only from the neurons in V,_;, and send their outputs only
to the neurons in V.

-
The set of edges E consists of directed connections (u,v), whereu € V,_; and ve V), for I = 1,2, ..., L. This ensures that the graph
is acyclic, and that connections only exist between neurons in adjacent layers, not within the same layer or skipping layers.

1 When Q is a number, then |Q| denotes the absolute value of Q.
2 Possible worlds are often called models or interpretations as well.
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Each neuron v € V' \ V}, (i.e., all neurons except those in the input layer) computes a weighted sum of its inputs, adds a bias term,
and then applies a non-linear activation function o. Specifically, for a neuron v € V; in layer / (where / = 1,2,..., L), the output z,, is
given by

zU=0'< Z ww-xu+bv>.
u€V_y
Here, w,,, denotes the weight of the edge from neuron u in layer ¥;_; to neuron v in layer ¥}, x, is the output of neuron u, and b,, is
the bias of neuron v. Among the activation functions commonly used in ANNs are the sigmoid, the Rectified Linear Unit (ReLU), and
the softmax function.

As we shall discuss in Section 6, training an ANN involves iteratively tuning its parameters (i.e., the w,,’s and b, corresponding
to every neuron) in order to minimize the disparity between the desired/actual outputs and the predictions of the network, thereby
improving its predictive accuracy. For a detailed exposition on the architecture of feed-forward ANNs, the interested reader is referred
to the classic textbooks by Haykin [32] and Bishop [9].

3. The AGM framework

The process of changing beliefs has been formalized by Alchourrén, Gardenfors and Makinson, through the introduction of a
versatile framework for belief change, now called the AGM framework, after the initials of its three originators [1]. Within the AGM
framework, the state of belief of an agent is represented by a logical theory K (also referred to as a belief set), and the new information
(also named epistemic input) is represented by a logical formula ¢. Between K and ¢, the AGM framework examines two fundamental
change operations, namely, belief revision (or simply revision) and belief contraction (or simply contraction). In their seminal article,
the AGM trio characterized axiomatically both these types of change operations, in terms of a collection of well-accepted rationality
postulates, whereas, in a subsequent work [37], Katsuno and Mendelzon developed a possible-worlds characterization for the process
of revision. In this section, we present the axiomatic characterization of the AGM framework (Subsection 3.1), the possible-worlds
characterization of Katsuno and Mendelzon (Subsection 3.2), as well as a concrete well-known AGM-style revision operator, proposed
by Dalal [17] (Subsection 3.3).

3.1. Axiomatic characterization

In the context of the AGM framework, the process of revision is encoded into a revision function. A revision function * is a binary
function that maps a belief set K and a sentence ¢ to a belief set K * ¢, representing the result of revising K by ¢. We shall say that
a revision function * is an AGM revision function iff it respects the following rationality postulates (K * 1)-(K s 8), known as the AGM
revision postulates [1].

(K#1) K = ¢ is a theory.

K#%2) @eK=x*xqp.

K*x3) K*xpCK+oe.

K«4) If-@¢&K,then K+ ¢ CK *@.

(K*5) If ¢ is consistent, then K * ¢ is also consistent.
K#6) IfCn(p)=Cn(y),then K x =K =y.

K=+7) Kx(@Ay)S(K=@)+y.

(Kx8) If-ywé&K=*xq,then (K*@)+ywy CK*x(pAy).

It is stressed that, in the special case where ¢ is consistent with K (i.e., 7@ ¢ K), the AGM revision postulates (K * 3) & (K * 4)
dictate that the process of revision degenerates to expansion, meaning that K * ¢ = K + ¢.

In an analogous manner, the process of contraction is encoded into a contraction function. A contraction function =~ is a binary
function that maps a belief set K and a sentence ¢ to a belief set K ~ ¢, representing the result of contracting ¢ from K. We shall
say that a contraction function — is an AGM contraction function iff it respects the following rationality postulates (K = 1)-(K = 8),
known as the AGM contraction postulates [1].

(K=1) K =g is a theory.

K=2) K=-@pCK.

(K-3) Ifp¢K,thenK-¢p=K.

(K+4) If ¢ is not tautological, then ¢ ¢ K = ¢.
(K=5) IfpeKk,then KC(K =)+ .

(K=6) IfCn(p)=Cn(y),then K -p=K ~y.
K=7) (K=o)n(K=y)SK=(pAy).

(K=8) Ifpg&K-=(pAy), then K= (pAy)C K= o.
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A concrete discussion on the rationale behind the AGM revision and contraction postulates has been conducted by [24, Chapter 3]
and Peppas [55, Section 8.3]. Herein, we suffice to mention that their guiding principle is the economy of information, according to
which the belief set K is modified as little as possible in response to the epistemic input ¢.

It is noteworthy that the change operation identified by the AGM revision postulates and that identified by the AGM contraction
postulates are not independent to each other; on the contrary, they are strongly interrelated. Such an interrelation was suggested by
Harper [31], who proposed a procedure that defines contraction in terms of revision, encoded into the following condition (HR),
known as the Harper Identity.

(HR) K4¢:(K*ﬂ¢)nK.

Condition (HR) asserts that, for contracting an epistemic input ¢ from a belief set K, one should, firstly, revise K by -, and then
intersect the revised belief set with K. It turns out that, given an AGM revision function =, the contraction function ~ produced from
#, through the Harper Identity, is an AGM contraction function [24].°

3.2. Possible-worlds characterization

It is true that the AGM revision postulates (K * 1)—(K * 8) do not suffice to uniquely specify the revised belief set K * ¢, given
K and ¢ alone; the alluded postulates only identify the territory of all different rational ways of performing revision. For an exact
specification (construction) of the belief set K ¢, constructive models for belief change are required, namely, appropriate extra-logical
tools that codify particular modification policies. One such popular constructive model, based on a special kind of total preorders
over possible worlds called faithful preorders, is the one proposed by Katsuno and Mendelzon [37].*

Definition 1 (Faithful preorder, [37]). A total preorder over M, denoted by <y, is faithful to a belief set K iff [K] # @ entails
[K]=min(M, <g).

Intuitively, a faithful preorder <y over M encodes the comparative plausibility of all possible worlds of M, relative to the belief set
K; the more plausible a world is modulo K, the lower it appears in the ordering <.

Definition 2 (Faithful assignment, [37]). A faithful assignment is a function that maps each belief set K to a total preorder <y over M, that
is faithful to K.

Katsuno and Mendelzon proceed then to the following representation theorem.

Theorem 3 ([37]). A revision function * satisfies postulates (K % 1)—(K * 8) iff there exists a faithful assignment that maps each belief set
K to a total preorder <y over M, such that, for any sentence ¢ € L:

R)  [K* @] =min([g],<g).

Hence, according to condition (R), the revised belief set K * ¢ is specified in terms of the most plausible @-worlds relative to K.

Combining condition (R) with the Harper Identity (HR) of the preceding subsection, we are able to deduce a possible-worlds
characterization for the process of contraction as well (cf. Section 7 of [14]). Specifically, let K be a belief set, and let * be an AGM
revision function that assigns at K a faithful preorder <y over M, via condition (R). Moreover, let = be the AGM contraction function
induced from %, via the Harper Identity. Then, for any epistemic input ¢ of L, the following condition (C) holds, suggesting that the
contracted belief set K = ¢ is specified in terms of the set-theoretic union of the K-worlds and the most plausible ~¢-worlds relative
to K.

@ [K=ol=[K]Umin(-¢], <k).
3.3. Dalal’s revision operator
For a belief set K, Dalal specifies the plausibility of possible worlds, encoded into a preorder <y faithful to K, in terms of a
Hamming-based difference between worlds [17]. In the limiting case where the belief set K is inconsistent (i.e., [K] = @), Dalal defines

the belief set resulting from the revision of K by ¢ to be equal to Cn(g). For the principal case of a consistent belief set K (i.e.,
[K]# @), he proceeds to the following definitions.

Definition 4 (Difference between worlds). The difference between two worlds r, r' of M, denoted by Diff (r,r"), is the set of propositional
variables that have different truth values in the two worlds. That is,

3 An analogous procedure that defines revision in terms of contraction is also available by Levi [49].
4 Other popular constructive models for belief change are the epistemic-entrenchment model [25], and the partial-meet model [1].
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Diff (r,r") = ((r\r’) u (¥ \r)) npP.

Definition 5 (Distance between belief sets and worlds, [17]). The distance between a consistent belief set K and a world r, denoted by
D (K, r), is the cardinality-minimum difference between r and the K-worlds. That is,

D (K, ) = min <{|Diff(w,r)| ‘we [K]}).

Definition 6 (Dalal’s revision operator, [17]). Dalal’s revision operator * is the revision function induced, via condition (R), from the family
of Dalal’s preorders {C }y x, where each Dalal’s preorder Ty is uniquely specified such that, for any r,r’ € M,

rCxr iff D(K,r)<D(K,r).

As noted by Katsuno and Mendelzon [37, p. 269], for each (consistent) belief set K, C is a total preorder faithful to K. Therefore,
Dalal’s revision operator satisfies all the AGM revision postulates, meaning that it is an AGM revision function. A concrete application
of Dalal’s revision operator is described in Example 11 of the subsequent section.

We close this section noting that the AGM framework has been extensively studied, and a plethora of augmentations to it have
been proposed in the literature; the reader is indicatively referred to the works [38,54,58,57,3,4,19,5,22,41,28].

4. Belief change as a gradual transition of beliefs

Assume that an agent changes (revises or contracts) her initial belief set K; and reaches a modified belief set K,. The AGM
framework, outlined in the previous section, specifies the rational properties that the transition from K; to K, should respect.
However, the AGM framework does not address the actual K;-to-K, transition; it focuses solely on the initial and final states of this
process, omitting the dynamics of the transition itself. In this section, we delve into the nature of the K| -to-K, belief transition. To that
end, we firstly introduce in Subsection 4.1 two intuitive measures of distance between belief sets. Thereafter, in Subsection 4.2, we
sketch the process of belief change as a gradual alteration of intermediate states of belief, and demonstrate how the aforementioned
measures can naturally be utilized for effectively quantifying the disparity of the knowledge encoded into these intermediate states
of belief. In Subsection 4.3, we highlight the association of the notion of gradual beliefs with notable formal frameworks of belief
change.

4.1. Distance between belief sets
A measure of distance between two arbitrary belief sets K; and K,, essentially, encodes a notion of difference between the

knowledge represented by the belief sets K| and K,. In Definition 7 and Definition 8, we introduce two intuitive Hamming-based such
measures, namely, type-A distance and type-B distance between belief sets, respectively.

Definition 7 (Type-A distance). Let K|, K, be two consistent belief sets. The type-A distance between K| and K,, denoted by Dist 4(K, K,),
is the cardinality-minimum difference between the K,-worlds and the K,-worlds. That is,

Dist4 (K. K,) =min<{‘Dijj‘(w,w’)‘ twelK,] and w’e[Kﬂ}).

Definition 8 (Type-B distance). Let K|, K, be two belief sets. The type-B distance between K| and K,, denoted by Distp(K, K;), is the
cardinality of the symmetric difference between [K;] and [K,]. That is,

Disty Ky, K2) = |(1Ki1\ (K1) U 1Ko\ 1K D) |

Notice that the type-B distance between two belief sets K; and K,, essentially, expresses the Hamming distance between the
possible worlds satisfied by these belief sets. Example 9 concretely illustrates the usage of both type-A and type-B distances.

Example 9 (Distances between belief sets). Let P = {a,b}, and let K; = Cn(aV b) and K, = Cn(-a A —b). Then, [K,] = {ab, ab, Eb} and
[K,]1= {ab}. In view of Definitions 7 and 8, we derive that Dist 4 (K, K,) = | and Dist5(K,, K, ) = 4, respectively.

4.2. Intermediate belief sets during belief change

It is well-accepted that humans often exhibit resistance to changing beliefs due to a variety of cognitive and psychological reasons
[46,36]. This resistance to belief change implies that it would be plausible to assume that a realistic agent would often change her
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beliefs gradually, rather than instantly; this gradual transition would reflect complex cognitive processes influenced by various factors,
including evidence, social interactions, and interconnected belief systems. Indeed, such a gradualist view of belief change has been
substantially supported in studies on human development [59,65,72].°

In response to this cognitive-based gradualism of beliefs, herein, we outline the transition of an agent, from an initial belief set
K, to a modified (revised or contracted) belief set K,, as a progressive adjustment of beliefs. Specifically, we assume that the agent,
as changing her state of belief from K| to K,, adheres to a sequence of intermediate belief sets H, ..., H,. Roughly speaking, the
intermediate belief sets H,, ..., H, represent in-between states of belief that are lying somewhere across the span between K; and
K,. In what follows, we shall denote the sequence Hy, ..., H, by the tuple (K|, K,); i.e, (K|, K,) = (H,,..., H,).

As an indicative realistic example of the alluded intermediate states of belief, consider the subsequent scenario.

Example 10 (Gradual adjustment of beliefs). Bob has two friends, Maria and George, who do not know each other. Bob’s initial beliefs
is that Maria and George are not adopted. Hence, denoting by a and b the propositions “Maria is not adopted” and “George is not
adopted”, respectively, Bob’s initial belief set is K| = Cn(a A b). Suppose, now, that Bob receives an epistemic input ¢ = —~a A —b,
suggesting that both Maria and George are, as a matter of fact, adopted. In response to this new information, Bob revises his beliefs
and ultimately adheres to the belief set K, = Cn(—a A —b). It seems reasonable to assume that, prior to adopting his revised belief
set K,, Bob likely transitioned through an intermediate belief set — either Cn(—a A b) or Cn(a A —b). This indicates that before Bob
came to believe that both of his friends are adopted, he initially believed that just one of the two friends is adopted. Such progression
reflects a gradual adjustment in Bob’s beliefs in response to new information.

In our formal context, there could be several reasonable ways through which the intermediate belief sets Hy, ..., H, are deter-
mined. Indicatively, they could be induced by the structure of the faithful preorder <y that the agent assigns (via (R) and/or (C))
at the initial belief set K;; alternatively, they could be induced by a notion of distance between belief sets (see Subsection 4.1), irre-
spectively of a faithful preorder. For instance, putting (T Iseee ,T,) = (K »Hy,....,H,, Kz), a plausible relation between the belief sets
Ti,...,T; is expressed through the following condition (D), for any i, j,m € {1,...,/} such thati < j <m,

(D)  Dist (T,.T,,) > Dist (T,,T,,),
where “Dist” denotes either type-A or type-B distance. Condition (D) essentially expresses the intuition that, as the agent modifies
her beliefs in order to reach the belief set T,,, she progressively adheres to belief sets whose distances from 7,, gradually shrink. One
can also argue that the gradual transition from K, to K, could respect other plausible properties as well. For example, given that the
shift from K, to K, is initiated by an epistemic input ¢, consider the following four postulates (I1)-(I4).

(I1) For every belief sets H,-,Hj S (Hl,...,H,,) such that i < j, if ~@ & H;, then —¢p & Hj.
(I2) For every belief sets H,.,H; e (Hl,...,H,,) such that i < j, if p € H;, then p € H;.
(I3)  For every beliefset H € (H,,...,H,), "o ¢ H.

(I4) For every belief sets H;, H ;€ (H 1,...,H,,) such that i < j, there are non-tautological sentences QP € L such that
QF@Fp,p,€H; and ¢, € H;.

Postulates (I1) and (I2) are in the same spirit and enforce a sort of monotonicity property with respect to the epistemic input
@. Specifically, (I1) asserts that, once =g is not a belief of some intermediate belief set H; € (H e H ,,), it cannot be a belief of
any subsequent belief set H; € (H e H ,,) (for j > i). Likewise, (I2) states that, once ¢ is a belief of some intermediate belief set
H; € (H,,...,H,), it should remain a belief of every subsequent belief set H; e (Hy,...,H,) (for j > i). Postulate (I3) is a rather
radical condition and it is strictly stronger than (I1); it asserts that the negation of the epistemic input ¢ is not believed in any of
the intermediate belief sets H, ..., H,. This implies that, even if the agent initially believes ¢ (i.e., =@ € K;), she abandons this
belief at the first intermediate step, as ~¢ & H . Lastly, postulate (I4) captures the intuition that, as the agent transitions towards the
final belief set K,, she progressively adheres to logically stronger non-tautological beliefs that entail ¢. This indicates that the agent
gradually accepts the informational content of the epistemic input ¢. All postulates (I1)—(I4) express plausible properties that the
transition from K; to K, may exhibit. However, our aim here is not to constrain the potential nature of this transition, therefore, we
will refrain from introducing additional properties that could potentially impose limitations.

Example 11 illustrates three concrete scenarios of belief revision, in the context of which reasonable intermediate belief sets are
presented — analogous scenarios in the context of belief contraction can be devised in a totally symmetric manner.

Example 11 (Intermediate belief sets). Let P = {a,b,c} and assume that K = Cn(a A b A ¢) is the initial belief set of the agent; thus,
[K] = {abc}. Firstly, suppose that, for implementing revision, the agent utilizes an AGM revision function * that assigns (via (R)) at
K a faithful preorder <y over M, specified as follows:

_ abc _
abc <k aéc <k abe <k al_)c
abc b abc

5 In a formal context, the belief-change process of non-ideal agents constitutes an important domain of study [73].
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Final
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Fig. 1. Belief transitions of the agent described in Example 11.

Now, let @ =(ma AbAc)V(aA-bAc) be an epistemic input. Then, according to condition (R) of Subsection 3.2, the sx-revision of K
by ¢ produces a belief set K s @, such that [K * @] = min([¢], <g) = {abc, aZc}; thus, K x ¢ = Cn((ﬂa AbAc)V(aA-bA c)). Against
this background, a sensible <y -generated sequence of intermediate belief sets to which the agent adheres during the transition from
K to K % ¢ would be

(K.K %)= (H,=Cn(@vb)A=c), Hy=Cn(=an b)),

for which [H,]= {EbE, aEE,abE} and [H,] = {EZC,EBE}. Observe that, for any r € [H,], any /' € [H,] and any r” € [K * ¢],
r <g r' g "', meaning that the H,-worlds are more plausible (modulo K) than the H,-worlds, which are in turn more plausi-
ble (modulo K) than the K * ¢-worlds. Essentially, this suggests that, during the process of revision, the agent transitions from
initially more plausible states of belief to ones that are less plausible, ultimately arriving at the revised belief set K * ¢.

Next, assume that, for implementing revision, the agent utilizes Dalal’s revision operator x that assigns (via (R)) at K the (uniquely
defined) faithful preorder Cy over MO:

abc abe -
abc Cx abe Cx abe Cx abc
abc abc

Now, let ¢ = —a A =b A —c be an epistemic input. Then, the x-revision of K by ¢ produces a belief set K x ¢, such that [K * ¢] =
min([@], <g) = {abc}; thus, K * ¢ = Cn(—a A b A —c). Against this background, a sensible C g -generated sequence of intermediate
belief sets to which the agent adheres during the transition from K to K x ¢ would be

(KK @) = <H1 =Cn((-'a/\b/\c)v(a/\-'b/\c)v(a/\b/\—'c)),Hz=Cn<(-|a/\-|b/\c)v(ﬂa/\bAﬂc)v(aA-'b/\-'c))),

for which [H,] = {Ebc,aEc,abE} and [H,] = {EEc,EbE, aEE}. Observe that, for any r € [H,], any ¥ € [H,] and any '’ € [K * ¢],
rCg r' Cg r’’. Moreover, putting (7}, 15,73, T}) = (K, H,, Hy,K x <p), it is true that, for any i, j,m € {1,2,3,4} such that i < j < m,
Dist4(T;.T,,) > Dist,4(T;.T,,). This implies that the intermediate belief sets H, and H, represent in-between states of belief that
are lying across the type-A distance between K and K % ¢, which is Dist , (K, K x (p) = 3. Observe that the relation of the type-A
distances between the involved belief sets is the one encoded into the above-mentioned condition (D).

As a last scenario, assume that K; = Cn((aV b) A c) is the initial belief set of the agent. Suppose that the agent revises K; by
@ =7a A b A -c, and results in a revised belief set K, = Cn(=a A b A =¢). Thus, [K;]= {abc, aEc,Ebc} and [K,] = {EZE}, meaning
that Distg(K,, K,) = 4. Then, a sequence of intermediate belief sets to which the agent adheres during the transition from K, to K,
could be

(Ki.Ky) = <H1 =Cn((—'a/\—lb/\ﬂc)V(aAﬂbAc)v(aAbA—'c)),Hz=Cn((—-a/\ﬂb/\—|c)v(a/\ﬂb/\c))>,

for which [H,] = {EZE, aZc,abE} and [H,] = {EEE, aZc}. Putting (TI,TQ,T3,T4) = (K],Hl,Hz, K,), it is true that, for any
i,j,m€ {1,2,3,4} such that i < j < m, Dist(T;,T,,) > Disty(T;,T,,). This suggests that the intermediate belief sets H; and H,
represent in-between states of belief, with the posterior belief set H, being “closer” to K, than the prior belief set H,. Note that the
sequence (K, K,) is irrespective of a faithful preorder; it solely depends on the type-B distances between the involved belief sets, in
a way that condition (D) is respected.

With regard to postulates (I1)-(I14), in the first two scenarios, postulates (I1) and (I2) are trivially respected, while postulates (I3)
and (I4) are violated. In contrast, the final scenario satisfies all postulates (11)—(I4), with (I2) being trivially so. Finally, note that the

corresponding transitions in the agent’s beliefs are abstractly illustrated in Fig. 1.

4.3. Interesting associations

The concept of gradual beliefs discussed earlier parallels, to some extent, the idea of non-prioritized revision, a form of belief revision
designed to weaken postulate (K * 2). Prominent types of non-prioritized revision include credibility-limited revision by Hansson et al.
[30], where new information is either fully accepted or entirely rejected, and selective revision by Fermé and Hansson [22], where an
agent may accept only a portion of the new information, embodying the essence of postulate (I4). Similarly, improvement operators
by Konieczny et al. [40] and promotion operators by Schwind et al. [64] employ distinct methods to implement revision by increasing

6 x denotes the strict part of C .
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the plausibility/firmness of the epistemic input within the state of belief. These types of belief change are indeed connected to the
idea of gradual beliefs, though they primarily concern the process of revision, whereas, gradual beliefs also encompass the process of
contraction. A closer investigation of these associations promises to yield intriguing insights and is suggested for future research.

Beyond the above-mentioned non-prioritized and incremental approaches, a line of research has explored how sequential belief
revision can be viewed as a learning process that converges toward truth in the limit. Kelly [39] investigates the “learning power” of
revision methods, analyzing in what sense they can reliably identify correct hypotheses across multiple environments. Similarly, work
by Baltag, Gierasimczuk, and Smets [7,8] focuses on “truth-tracking”, showing how repeated revisions of one’s state of belief can
lead to eventual convergence on correct beliefs. These frameworks resonate with the gradualist perspective introduced here, insofar
as they cast belief revision itself as a step-by-step adjustment that can stabilize on the truth under suitable conditions.

On a separate note, assume that the agent assigns (via (R) and/or (C)) the faithful preorder < K, at the initial belief set K, and the
faithful preorder <y at the final belief set K,. Our analysis identifies the transition from K to K, as a gradual transition of beliefs.
Similarly, it would be of interest to sketch the transition from the initial preorder < to the final preorder <y as a gradual transition
of preorders. In this context, the intuition behind the well-known postulates proposed by Darwiche and Pearl [19], along with works
by Booth and Meyer [12] or Spohn [68], can provide valuable guidance. Alternatively, the transition from <g, to <g could be based
on a notion of distance between preorders, analogous to the one expressed via condition (D). A promising candidate for this distance
is the cardinality of the symmetric difference between <y, and < . Under this premise, as the agent modifies her initial preorder
=<k, to reach the final preorder <y , she will progressively adhere to preorders whose distances from <y gradually shrink.

Having discussed some basic concepts of AGM-style belief change, the remainder of this article is devoted to the establishment of
a connection between AGM-style belief change and a special type of feed-forward ANNs, which we shall call binary ANNs.

5. Binary Artificial Neural Networks

In this work, we solely consider feed-forward ANNs whose inputs X/, ..., X, take binary values (either O or 1). Given that any
collection of input data can be converted into a collection of binary values, the previous assumption does not restrict the type of input
of the considered ANNs. We also assume that each neuron i (with i € {1,...,m}) of the output layer of an ANN produces a real value
y; € [0, 1]. Notice that an ANN with these properties places no constraints on the values of its weights and biases. Thus, an ANN with
a single neuron in its output layer that implements the sigmoid activation function, used for binary classification, or an ANN that
uses the softmax activation function in its output layer, common for multi-class classification, are both representative examples of
ANNs with the aforementioned properties, provided that the networks accept binary values in their input layers.

Now, given a (real-valued) threshold 7; € [0, 1], each real-valued output y; of an ANN of the above type identifies a binary output

Y;, such that:
Y, = 1 if y2g
0 if y<7g

Thus, an ANN with the above-mentioned properties, along with a collection of thresholds, form an (augmented) ANN whose inputs
Xi,...,X, and outputs Y7, ...,Y,, all take binary values. We shall call an ANN of this type a binary ANN. The topology of a binary
ANN, with a single hidden layer, is depicted in Fig. 2.

Evidently, the limited assumptions/constraints characterizing binary ANNs make them suitable for a plethora of real-world appli-
cations. Indicatively, the well-known MNIST (Modified National Institute of Standards and Technology) dataset [48] —which contains
a large collection of handwritten digits that are commonly used as training-benchmark for various classification algorithms [60,44]—
can be utilized for training a binary ANN. As the images in the MNIST dataset consist of grayscale pixel values ranging from 0 to 255,
the only modification required for feeding the MNIST dataset to a binary ANN is the conversion of each grayscale value (0-255) to
an 8-bit binary number, or even a binarization into strictly black-and-white pixels.”

The following crucial observation, grounded in the universal-approximation capabilities of ANNs [33], allows the operation of an
arbitrary binary ANN with multiple outputs to be reduced to a collection of binary ANNSs, each with a single output.

Remark 12. The input-output relationship of any binary ANN with multiple outputs can be emulated by means of a collection of
binary ANNSs, each with a single output.

In view of Remark 12, and for ease of presentation, our analysis will primarily focus on single-output binary ANNs.
Firstly, it is stressed that a binary ANN with a single binary output Y induces a Boolean function.® We shall refer to the Boolean
function f corresponding to the binary output Y as the Boolean function of Y; thus,

7 The use of an Autoencoder [42,43] to compress the MNIST dataset into a lower-dimensional representation could facilitate more efficient learning by the binary
ANN.

8 Notable indicative works that study the induced Boolean functions of ANNs are the works [51,15,18,67]. Moreover, recent works have demonstrated how various
ML classifiers can be associated with Boolean functions, exhibiting the same input-output behaviors. For instance, Izza et al. [35] explore the case of decision trees,
Ignatiev and Marques-Silva [34] investigate the case of decision lists, while Audemard et al. [6] examine the case of several families of ML classifiers.
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Fig. 2. The topology of a binary ANN, with a single hidden layer, which receives binary inputs X, ..., X, and generates binary outputs Y}, ...,Y,,. Each real value y,
(with i € {1,...,m}) of the output layer of the ANN passes through the threshold 7; and generates a binary output Y.

Y=7(X,....X,).

The Boolean function f of Y can be represented as a propositional formula y of L, in the sense that f and y respect identical truth
tables. To illustrate the relation between f and y, assume that the number of propositional variables of P is the same as the number
of the binary inputs X, ..., X, of the ANN; i.e., |P| = n. Moreover, let w be a possible world of M such that, for any p; € P with
i€{l,...,n}, p € w whenever X; =1 and —p; € w whenever X; = 0. Obviously then, there is a one-to-one correspondence between
the propositional variables of 77 and the binary inputs X, ..., X,,. Hence, for the binary output Y, the following statement is true:

f(X,....X,)=1 iff welyl

That is to say, the possible world w satisfies y iff the Boolean function f of Y maps to 1 the truth values of the propositional variables
assigned in w. Given that, for the belief set K = Cn(y), it is true that [K] = [y], it follows that the Boolean function f of the binary
output Y can, equivalently, be represented by the belief set K.

The following concrete example presents a simple, yet representative, binary ANN with a single output, whose input-output
relationship can symbolically be represented by means of a propositional formula or, equivalently, by means of a belief set.

Example 13 (Symbolic knowledge of a binary ANN). Consider a binary ANN that has two binary inputs X, X, and one binary output Y,
and assume that it has been trained so that it implements the logical operation OR. Let a, b be the propositional variables corresponding
to the binary inputs X, X,, respectively, and let f be the Boolean function of the binary output Y. Given that f(0,0)=0, f(0,1)=1,
f(1,0)=1and f(1,1) =1, we derive that the propositional formula y = aV b € L, such that [y] = {Eb, ab, ab}, represents the Boolean
function f of Y, and hence, the input-output relationship of the ANN. Equivalently, the Boolean function f of Y is also represented
by the belief set K = Cn(a Vv b). Observe that the sentence y is a disjunction of the propositional variables a and b, and thereby it
expresses the logical operation OR, as expected.

It follows from Remark 12 that the input-output relationship of a binary ANN with multiple binary outputs Y, ...,Y,, can be
represented by means of a non-empty tuple S = (K|, ..., K,,) of belief sets, where each belief set of .S represents the Boolean function
corresponding to a binary ANN with a single output. Hence, as illustrated in Fig. 3, a tuple S, which we shall call belief state, can
represent the state of belief (i.e., the input-output relationship) of any binary ANN.°

6. Machine learning through backpropagation

Backpropagation is a core algorithm essential for training feed-forward ANNs. The algorithm leverages calculus’ principles in
order to optimize the network’s parameters (weights and biases), aiming to reduce the discrepancies between the predicted/estimated
outputs and the actual/desired target values. In this section, we shall present a brief overview of the backpropagation algorithm —
for further details, the interested reader is referred to the seminal article by Rumelhart et al. [62], or to the classic textbooks by
Haykin [32] and Bishop [9].

9 In [11], a collection of belief corpora is referred to as a flock.

10
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K,
(¥2)
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S

Fig. 3. A belief state S = (K LKy Km> that represents the state of belief of a binary ANN, with binary outputs Y},Y,,...,Y,,. Each belief set of .S represents the
Boolean function corresponding to a binary ANN with a single output.

6.1. Overview of backpropagation

In a typical ANN, each neuron outputs a signal that is a non-linear function of the weighted sum of its inputs. The parameters defin-
ing these relationships are the weights and biases. Weights are arranged in matrices, with each matrix corresponding to connections
between two successive layers, whereas biases are similarly organized into vectors.

The process of training an ANN involves several key steps, initialized by what is known as forward propagation. In that context,
starting from the input layer and moving through to the output layer, each neuron’s output is calculated based on the current set
of weights and biases. The core of backpropagation begins after this forward pass, when the algorithm calculates the gradient of the
loss function £ —a measure of prediction error— relative to each parameter (weight and bias). This process involves the following
sub-steps:

1. Error Estimation at Output: The difference between the actual output and the desired output for all samples is first determined
at the output layer. This difference forms the basis of the loss function £, which quantifies the error at the network’s output. Note
that a sample is a pair (x, y), where x is a (typically vector-valued) collection of feature values representing a single observation,
and y is the ground-truth label (actual target value) associated with that observation. The sample represents one instance from
the dataset used to train or evaluate the ANN.

2. Error Propagation Backwards: The aforementioned error, expressed via the loss function L, is then propagated backward
through the network. This backward pass efficiently computes the gradients of £ using the chain rule, a fundamental rule in
calculus, enabling the estimation of error contributions from all neurons in the network.

3. Gradient Calculation: For each parameter, a gradient (partial derivative) of the loss function L is calculated which signifies the
direction and rate at which the error would decrease the fastest. These gradients indicate how much a change in each parameter
will impact L.

4. Parameters Update: The weights and biases are then adjusted in the opposite direction of their respective gradients from L, scaled
by a small factor a, known as the learning rate. This step is aimed at reducing the value of the loss function £, by updating the
parameters to decrease the error.

By repeating the above steps across multiple iterations (epochs), the ANN gradually learns the optimal parameters that minimize
the loss function £, thereby enhancing its accuracy in making predictions.

It is important to note that the type of loss function L is intentionally left unspecified to allow for flexibility in its choice. Common
types of loss functions include Mean Squared Error for regression tasks and cross-entropy loss for classification tasks. For the purposes
of this study, it suffices to bear in mind that, regardless of its specific form and some basic properties that it needs to respect (such as

11
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differentiability), the loss function L is a well-behaved function that quantifies the difference between the predicted outputs and the
actual target values across all samples.'°

The following toy example captures the essence of how backpropagation flows gradients backward to adjust weights based on
prediction error, even in the simplest architectures.

Example 14 (Backpropagation). Consider the minimalistic feed-forward ANN illustrated below, consisting of a single neuron in the
input layer, a hidden layer with one neuron, and a single neuron in the output layer. Let X denote the input, and y the ground-truth
label. Let w; denote the weight connecting the input and hidden layer neurons, and w, the weight connecting the hidden and output
layer neurons. For simplicity, we assume no biases. The two neurons of the hidden and output layer use the sigmoid activation
function o(x) = T

Input Layer T:l;;n Output Layer

w w,

X y

During forward propagation, the output of the hidden-layer neuron is & = o(w, - X), and the network’s prediction is j = o(w, - h).
The binary cross-entropy loss function is given by £ = —< y-log(»+ (1 —y)- log(l — y)).
In the backpropagation phase, using the chain rule and the derivative of the sigmoid function ¢’ (x) = ¢(x) - (l - o-(x)) , the gradient
(partial derivative) of £ with respect to each weight is computed as follows:
oL oL 9y <ﬁ—y>(A N N
S (2 ) (509 k) =G
w, d9 OJw, y-A-9
oL _oL 05 oh _( 9=y _
ow, 0y oh Jw, y-(1=9)
- <&> (5= wy) (X)X ) =G =) wy 0 ;- X)X
y-a-y

Finally, the weights are updated via gradient descent as follows:

> : (6’(w2~h)-w2) : (a’(w1 ~X)-X) =

i—a~£, for i=1,2.
Jw;

1
6.2. The smoothness and monotonicity assumptions

In the course of this work, we adopt the subsequent two simplifying assumptions that characterize the training process of any
single-output ANN.

1. Smoothness: In each iteration of the parameters update using the backpropagation algorithm, the loss function L strictly decreases.
Formally, this means that, for any two consecutive values L, L, of the loss function, the following condition (S) holds:

(S) L,<L,.

The smoothness assumption, encoded into condition (S), allows us to focus on the convergence properties of the backpropagation
algorithm under idealized conditions. While this assumption does not generally hold in practice, due to factors such as the
stochastic nature of the optimization, learning rate selection, and the presence of non-convex loss landscapes, it simplifies the
analysis and enables us to derive certain theoretical guarantees about the learning process. It is important to note that, in practical
applications, techniques such as learning-rate schedules, momentum, or adaptive learning-rate methods are employed to mitigate
issues that may prevent the loss from decreasing after every update [27].

2. Monotonicity: Given that the ANN is trained over N individual samples, its loss function L is monotonically related to the sum

N
z |_)A73 - Vs
s=1

label.!! This monotonicity assumption implies that the ANN is closely tied to the sum of the absolute errors across all predictions;
hence, reducing these errors would directly reduce the value of the loss function £, leading to better model performance.

, where y, is the (real-valued) prediction of the output-layer neuron for the s-th sample, and y; is the corresponding

10" Details on types and properties of loss functions can be found in the textbook by Goodfellow et al. [27].
11 Two functions f and g (defined on the same domain) are monotonically related whenever, for all x, y in the domain, f(x) < f(») iff g(x) < g(). Thus, f and g
have a consistent direction of increase or decrease over their common domain.

12
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Fig. 4. The topology of the binary ANN of Example 17 (cf. Fig. 2 of Section 5).

The following interesting observations can be easily verified, and shall prove useful in our subsequent discussion. Remark 15
concerns the relation between the predictions of the output-layer neuron of a single-output binary ANN and the corresponding
predictions of its binary output, whereas, Remark 16 connects the predictions of the binary output of the ANN with the type-B
distance between belief sets (see Definition 8).

Remark 15. Consider a binary ANN with a single output that is trained over N individual samples. Let J, § be two (real-valued)
predictions of the output-layer neuron of the ANN for the s-th sample, let f/s, Y "/ be the corresponding (binary) predictions of the

N N N N
binary output of the ANN, and let y, be the corresponding label. Then, 2 V= ys) > Z | ﬁ; - ys‘ entails 2 )f’\ -V = Z
s=1 s=1 s=1 s=1

f’s’—y,\-‘~

Y, — y,| cannot increase

N N
In view of Remark 15, it follows that, if the sum Z 95— y,| decreases (resp., increases), then the sum Z
s=1 s=1

(resp., cannot decrease).

Remark 16. Let Y be the binary output of a single-output binary ANN, which is trained over N individual samples. Let ¥, ¥’
be two binary estimations that Y generates during training, and let K, K’ be the belief sets that represent the Boolean functions
corresponding to the estimations ¥, ¥, respectively. Then,

M=

= Disty(K,K')

©
1l

6.3. Illustrative examples: training binary ANNs

Let us now present Example 17, which illustrates the development of a binary ANN trained to perform a certain logical operation,
while adhering to smoothness and monotonicity assumptions throughout its training process. Example 17 will serve as a running
example in the subsequent sections of this article.

Example 17 (Training a binary ANN for a logical operation). A binary ANN is built with the aid of Keras Python library. The ANN
will be trained in order to implement the logical operation “at least one but not all”, and has the following topology, as visualized in
Fig. 4:

+ Three neurons in its input layer, thus, three binary inputs X, X,, X;.

+ One hidden layer with 50 neurons, each one equipped with a Rectified Linear Unit (ReLU) activation function.

+ One neuron in its output layer, equipped with a sigmoid activation function, producing a real-valued estimation j. The estimation
$ passes through a threshold = = 0.5, thus, the binary output Y of the ANN generates a single binary estimation ¥

As the ANN should implement the logical operation “at least one but not all”, the Boolean function f of the binary output Y
should be such that:

13
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Table 1
Successive transitions of the binary output Y of the ANN, during training, for all (8) possible combinations of input. The sum
2?: . |)A/Y — ¥,/ the loss function £ and the accuracy of the ANN, during training, are also reported.
Input 1-st 2-nd 3-rd 4-th 5-th 6-th Label
Output Output Output Output Output Output (yy)
X)) ;) ;) ) ) ;)
(0,0,0) 1 1 1 1 0 0 0
0,0,1) 0 0 1 1 1 1 1
(0,1,0) 0 0 0 1 1 1 1
0.1, 0 0 1 1 1 1 1
(1,0,0) 0 1 1 1 1 1 1
(1,0,1) 0 0 1 1 1 1 1
(1,1,0) 0 0 0 1 1 1 1
(1,11 0 0 1 1 1 0 0
>0 - 7 6 4 2 1 0 —
C 0.8324 0.7101 0.6766 0.6593 0.6461 0.1479 —
Accuracy 12.5% 25% 50% 75% 87.5% 100% —
£(0,0,00=0
£0,0,1)=1
f0,1,0)=1
F0,1,1)=1
£(1,0,00=1
f(1,0,1)=1
F,1,00=1
f(1,1,1)=0

The above mapping forms the training dataset of the ANN, which consists of 8 samples. The co-domain of f contains the labels that
shall be used during the training of the ANN. The ANN is compiled using a binary cross-entropy loss function £ (commonly used for
binary classification), which is defined as follows:

8
1 N A
£==g 3 (3, log) + (1 =y, -log(l = 3, ).
s=1
where y is the (real-valued) prediction of the output-layer neuron for the s-th sample, and y, is the corresponding (binary) label.
The network parameters were initialized randomly prior to training.

On that basis, Table 1 shows the successive transitions of the binary output Y of the ANN, during training, for all (8) possible
8

combinations of input. The table also reports the sum Z
s=1

¥, — y,|, as well as the values of the loss function £ and accuracy of

8 o
8= [Ys—s

the ANN, during training — note that the accuracy is defined as L 100%. It is evident that, as the network is being

8
trained, the loss function £ and the sum Z Y, - ys) strictly decrease. This implies that the network respects the smoothness and
s=1

monotonicity assumptions during its training. On the other hand, the accuracy strictly increases, reaching a value of 100%, meaning
that the network has been properly trained.

Next, let us denote by a, b, c the propositional variables corresponding to the binary inputs X, X,, X3, respectively. Let K, K,
K;, K4, K5, K¢ be the belief sets that represent the six different Boolean functions to which the binary output Y successively adheres
during training, as illustrated in Table 1. It follows then from the table that:
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Label: O Label: O Label: 1 Label: 0 Label: 1 Label: 1

Fig. 5. Representative MNIST images used in the experimental setup of Example 18, along with their corresponding (binary) labels.

[K,1= {abc} & K, =Cn(-aA-bA-c)

(K, = {abc,abc} = K,=Cn(=bA-c)

[K;3]= {EEE,EEC,Ebc,aEE, aZc,abc} = K;= Cn(—-bv c)

[K,]=M = K,=Cn(®)

[Ks]= {EZC,EbE,Ebc,aZE, aZC,abE, abc} = K5= Cn(a VbV c)

(Kol = {EEc,abE,abc,aEE,aZc,abE} = K, =Cn<(a\/b\/c)/\-|(a/\b/\c))

Therefore, the Boolean function f of the binary output Y of the trained ANN is represented by the belief set K¢ = Cn((a VbVec)A

“(aAbA c)), or equivalently, by the propositional formula y =(aV bV ) A=(aAbAc). As expected due to the proper training of

the ANN, both K¢ and y express the logical operation “at least one but not all”.

Finally, we note that alternative initializations of the ANN’s parameters may result in different transition patterns for the binary
output Y. Nonetheless, as long as the network adheres to the smoothness and monotonicity assumptions throughout training, the
validity of our analysis is preserved.

Example 18 concludes this section by demonstrating the training of a binary ANN on the MNIST dataset. As noted in Section 5,
the MNIST dataset is a standard benchmark of handwritten digits, with each image represented by grayscale pixel values [48].

Example 18 (Training a binary ANN on the MNIST dataset). A binary ANN is built using the Keras Python library to recognize
handwritten digits O and 1 from the MNIST dataset. Our training and testing datasets comprise 700 and 100 samples, respectively,
with no overlap. Each MNIST image is down-sampled from its original 28 X 28 resolution to 10X 10 pixels, and subsequently binarized
into black-and-white pixels. Hence, each image can be effectively encoded as a sequence of 10 X 10 = 100 binary numbers. Fig. 5
displays a representative selection of images used in the experimental setup, along with their corresponding (binary) labels.

The binary ANN consists of the following layers:

+ An input layer with 100 neurons, thus, 100 binary inputs X7, ..., X, each receiving one binary pixel from an image.

+ A hidden layer with 10 neurons, each utilizing a ReLU activation function.

+ An output layer with a single neuron, equipped with a sigmoid activation function, producing a real-valued estimation j. The
expected output is § = 0 for images representing the digit 0, and j = 1 for images representing the digit 1. The prediction j is
thresholded at = = 0.5, so that the binary output Y of the ANN generates a single binary estimation ¥

The ANN is trained using the binary cross-entropy loss function £, as defined in Example 17, with network parameters randomly
initialized prior to training.
Within this setting, the following analysis will be exclusively conducted on the 100 samples of the testing dataset. Let us begin

with Table 2, which illustrates the successive transitions of the binary output Y of the ANN, during training, for two indicative input
100

images of the testing dataset. The table also reports the sum 2

s=1

Y, — y,/|, the loss function £ and the accuracy of the network, during

100

training. Notably, as training progresses, the loss function £ and the sum Z )A’S — ¥
s=1

on the testing dataset strictly decrease, implying

that the network adheres to the smoothness and monotonicity assumptions (on the testing dataset) during its training. Simultaneously,
accuracy steadily improves, reaching an impressive 99% on the testing dataset.

Thereafter, let us denote by py, ..., p;o the propositional variables corresponding to the binary inputs X, ..., X, respectively.
Clearly, there is a one-to-one-correspondence between the 10x 10 = 100 pixels of an image and the propositional variables py, ..., pigg-
On that basis, each image uniquely corresponds to a possible world w = {/,...,l;oo} (where [,,...,l;o are literals), such that, for
any p; € {pl, vploo}: I; = p; if the i-th pixel of the image has a value of 1, and /; = —p; if the i-th pixel of the image has a value of
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Table 2
Successive transitions of the binary output Y of the ANN, during training, for two indicative input MNIST images of the testing
dataset. As seen by the corresponding labels, Image A represents the digit 0, whereas Image B represents the digit 1. The sum

2;2‘} Y, — y,|, the loss function £ and the accuracy of the ANN on the testing dataset, during training, are also reported.
Input 1-st Output 2-nd Output 3-rd Output 4-th Output 5-th Output Label
;) @) X)) ;) ) )
Image A
1 1 1 0 0 0
Image B
I 0 1 1 1 1 1
P AN 6 2 2 1 ! _
C 0.4942 0.3833 0.2953 0.2266 0.1769 —
Accuracy 94% 98% 98% 99% 99% —

0. Now, let us denote by [ the set of possible worlds corresponding to the images of the training and testing datasets. Moreover, let
K|, K, K3, K, K5 be the belief sets that represent, respectively, the five different Boolean functions f|, f>, f3, f4, f5, to which the
binary output Y successively adheres during training, as illustrated in Table 2. Then, for any i € {1, ...,5}, it is true that:

. u;ﬁn={{11,...,zloo}eu:f,.(Xl,...,XmO)=1} and I CIK,.
-I]fmt:{{ll,...,lmo}eﬂ:fl-(Xl,..,,Xloo):O} and [, N[K]=0.

It follows from the above statements that the propositional knowledge satisfying the set [I;:n of possible worlds entails the belief set
K;, whereas the belief set K; entails the negation of the propositional knowledge satisfying the set [Ifmt of possible worlds.

7. Machine learning as a gradual transition of beliefs

The concept of intermediate states of belief, discussed in Section 4 within the context of belief change, can also take meaning
in the realm of the training process of ANNs. Indeed, given the binary output Y of a single-output binary ANN, there is a sequence
of belief sets K, ..., K, such that, for any i € {1,...,n—1}, K; and K, represent, respectively, the Boolean functions of Y right
before and right after the i-th update of weights and biases. Hence, K| and K,, are the belief sets that represent the Boolean functions
of Y before and after the whole process of training, respectively, and K,, ..., K,_; are the intermediate belief sets that represent the
consecutive Boolean functions of Y during training. Obviously then, Remark 12 of Section 5 entails that the training of a binary ANN
with multiple outputs leads to a gradual transition of ANN’s belief states.

Against this background, and in the presence of the smoothness and monotonicity assumptions of Section 6, we can formulate
Theorem 19 that highlights an interesting and natural relation of type-B distances between the aforementioned belief sets K, ..., K,
of the single-output binary ANN; the alluded relation is in the spirit of the relation encoded into condition (D) of Subsection 4.2.

n

Theorem 19. Assume that the training process of a binary ANN with a single output respects the smoothness and monotonicity assumptions.
Moreover, let Y be the binary output of the ANN, let K, be the belief set that represents the Boolean function of Y corresponding to the labels,
and let K, ..., K, be belief sets such that, for any i € {1,...,n— 1}, K; and K, represent, respectively, the Boolean functions of Y right
before and right after the i-th update of parameters, that is implemented during training. Then, for any i,j € {1,...,n} such that i < j,

Distg(K;,K,) > Distg(K;. K,,).

Proof. Assume that the binary ANN is trained over N individual samples, and let y be the neuron of the output layer that feeds the
binary output Y. Let i,j € {1,...,n} such that i < j, let yé, 7 be the (real-valued) predictions of y for the s-th sample that correspond

to the belief sets K;, K s respectively, and let y, be the label for the s-th sample. Moreover, let ff s l?{ be the (binary) predictions of
Y for the s-th sample that correspond to the belief sets K;, K, respectively.
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N
From condition (S) of Section 6, and the fact that the loss function £ of the ANN is monotonically related to the sums 2 ‘ ﬁi - ys)

s=1

, it follows that

N
and 2 ’f»’y — ¥
s=1

N
Po=y|> X9 =
s=1

N
s=1

Hence, in view of Remark 15 of Section 6, we derive that

N N
PAESAEDY
s=1

)A,j — Vs

s

Y/ -y,

N N
Given Remark 16 of Section 6, it is true that Z |YS’ - y,| = Distg(K;,K,) and 2 = Disty(K;, K, ). Combining the above,
s=1 s=1

we deduce that Dist g (K;, K, ) > Distp(K;, K, ), as desired. []

Example 20 builds upon Example 17 of the previous section, and points out the relation of type-B distances between the symbolic
states of belief to which a single-output binary ANN adheres during training, as highlighted in Theorem 19.

Example 20 (Distances in a binary ANN, cont’d Example 17). Recall that K, K,, K3, K,, K5, K4 are the belief sets that represent
the six different Boolean functions to which the binary output Y of the binary ANN successively adheres during training, and the
belief set K¢ represents the Boolean function of Y corresponding to the label. Given that [K;] = {EbE}, [K,]= {EbE, abE}, [K3]=
{EEE, EBC,Ebc,aZE, aEc,abc }, [K41=M, [Ks5]= {EEC,E[JE, Ebc,aza ch,abE, abc} and [Kg4] = {EEC,E[)E, Ebc,aEE, aEc,abE}, we have
the following list of type-B distances:

Distg (K. Kg) =7
Disty(K,,Kg) =6
Distp (K3, Kg) =4
Distg(Ky, Kg) =2
Disty(Ks,Kg) =1

It is obvious that
Disty(K,,Kg) > Disty(K,, Kg) > Distg (K3, Kg) > Distp (K, Kg) > Distg(Ks, Kg),
as expected due to Theorem 19.

8. Machine learning is AGM-compatible

As described in Section 6, backpropagation is a principal (gradient-based) algorithm used for training feed-forward ANNs. The
algorithm iteratively updates the parameters (weights and biases) of the ANN, until its loss function £ is minimized to an acceptable
value. As previously noted, during that update of its parameters, a binary ANN passes through a sequence of belief states. Focusing on
the binary output of a single-output binary ANN, there exists a sequence of belief sets that represents the successive Boolean functions
of that binary output. Against this background, we can formulate Theorem 21, which proves that the transitions between the above-
mentioned belief sets of the single-output binary ANN can be modeled/implemented by means of a single pair of an AGM revision
function and an AGM contraction function.

Theorem 21. Let Y be the binary output of a single-output binary ANN. Moreover, let K|, K, be belief sets that represent, respectively, the
Boolean functions of Y right before and right after an arbitrary update of the parameters of the ANN, that is implemented during its training.
There exist an AGM revision function %, an AGM contraction function ~, and two sentences @, @, € L depending on K,, K,, such that
K= (K@) = ¢,

Proof. Let * be an AGM revision function that assigns (via (R)) at every belief set K of the language a faithful preorder <y over M,
specified as follows:
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- min(M, <x) = [K].
s ragr, forall r,r & [K].

Hence, for any belief set K, the faithful preorder <y attributes equal plausibility (modulo K) to all possible worlds outside of
[K]. By the construction of <y and condition (R), it follows that, for any sentence y € L such that -y € K (i.e., [K]Nn [y] = @),
[K # y]=min([y],<g) = [x].

Moreover, let = be the AGM contraction function induced from #, via the Harper Identity (HR) of Subsection 3.1. Then, the
construction of <y and condition (C) entail that, for any sentence y € L such that y € K (i.e,, [KIN[-y]=@), [K - y] =[K]U
min([-x],<g) =[K]U [~x].

Now, we consider the two cases according to whether the successive belief sets K; and K, are mutually inconsistent or not, i.e.,
according to whether [K;1N[K,] =@ or [K;]N[K,] # @, respectively.

+ Assume firstly that [K;] N [K,] = @. Let ¢ be a sentence of L such that [¢;] = [K,], and let ¢, = T. Since [K;] N [K,] =@, it
follows that [K;] N [¢;] = @. Hence, we derive that [K; * ¢,] = [¢,] = [K,]; therefore, K, = K| * ¢,. Since ¢, = T, we deduce
from postulates (K ~2) & (K = 5) that (K| * ¢;) = ¢, = K| * ¢, and consequently, K, = (K| * ¢, ) = ¢,.

« Thereafter, assume that [K;] N [K,] # @. Let @, @, be two sentences of L such that [¢,]1=[K;]1N[K,] and [-¢,]=[K,]\ [K;].
Since [@] C [K|], it follows that the sentence @, is consistent with the belief set K, meaning that K| * ¢; = K| + ¢; = Cn(¢;).
This in turn entails that [K; * ¢;]1=[K;]1N[K,].

Next, since [K| * @] N [~@,] = @, it is true that ¢, € K| * ¢,. Therefore, [(Kl % ‘/’1) = (pz] =[K| * @ ]U[~@,] = ([Kl] N [Kz]) U
(IK,1\ [K 1) = [K;]. Consequently, K, = (K, * ¢;) = @,.

Thus, in any case, there exist an AGM revision function *, an AGM contraction function -, and two sentences ¢, @, € L that
depend on the belief sets K, K;, such that K, = (K| * @) = ¢,, as desired. []

Some comments on the preceding result are in order. Firstly, it is noteworthy that the AGM revision function * and the AGM
contraction function -~ of Theorem 21 implement a special type of belief change, called full-meet belief change [1,24]. Hansson in
[29] emphasizes that full-meet operations are essential in the study of belief dynamics. He argues that full-meet contraction serves
not only as a “point of reference”, but also as a foundational component in constructing composite contraction operators, similar
to how the basic operation of expansion is crucial in developing more sophisticated revision operators. Theorem 21 reinforces this
perspective, by demonstrating that full-meet operations can also act as a building block in effectively modeling the dynamics of the
belief sets that represent the (training-dependent) symbolic knowledge of a binary ANN.

Furthermore, it is true that the epistemic inputs ¢; and ¢, in the proof of Theorem 21 are specified in terms of the belief sets K
and K,. Since the “driving force” behind the transformation from K; to K, is the target labels used during training, it follows that
¢, and ¢, fundamentally capture the influence of these labels in effecting the change from K; to K,. Now, suppose that T is the
belief set that represents the Boolean function of the binary ANN of Theorem 21, as specified by the labels of the training dataset.
Assuming that the training process of the ANN respects the smoothness and monotonicity assumptions, it follows from Theorem 19
that the type-B distance of the belief set K, from T is smaller than the type-B distance of the belief set K; from T'. Roughly speaking,
this means that K, contains information that is “closer” to the informational content represented by the labels, than K. Therefore,
one could argue that ¢, and ¢, carry labels-based information that take the symbolic knowledge of the binary ANN “closer” to the
target knowledge. Undoubtedly however, further research is essential to gain a deeper and more comprehensive understanding of
the relationship between the training labels of the ANN and the epistemic inputs ¢ and @,.

On a related note, Theorem 21 points out that the sequence of belief sets representing the successive Boolean functions of a single-
output binary ANN can be modeled by an iterative application of AGM-style change operations (revisions and contractions). While
the original AGM framework introduced by Alchourrén, Gardenfors and Makinson does not address such multi-step changes [1], they
have been extensively explored in numerous subsequent studies on iterated belief change, as reviewed by Peppas in his survey [56].

In light of the above contributions, Fig. 6 illustrates the training process of a binary ANN with multiple outputs, represented as a
sequence of modifications of belief states .S;,.S,, ...,.S;, by means of a single pair (*,~) of AGM revision and contraction functions
that implement full-meet belief change. As pointed out in Remark 12 of Section 5, each output of the alluded binary ANN can be
emulated via a binary ANN with a single output. Modeling the training of binary ANNs using AGM-style operators enables a modular
perspective, wherein each individual training step can be independently analyzed and interpreted as a logical transformation. This
abstraction not only offers a conceptually appealing view of neural learning, but may also contribute to contexts such as explainability
by providing a symbolic trace of how a network’s internal representations evolve throughout training.

This section closes with Example 22, that builds upon Example 20 of the previous section, and points out the AGM-style belief
change in the context of a binary ANN, as highlighted in Theorem 21.

Example 22 (Belief change in a binary ANN, cont’d Example 20). Recall that K, K,, K3, K4, K5, K¢ are the belief sets that represent the
six different Boolean functions to which the binary output Y of the binary ANN successively adheres during training. Let % and - be
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Fig. 6. The training process of a binary ANN with multiple (m) outputs, represented as a sequence of modifications of belief states .S},.5,,...,.S;, by means of a single
pair (%, =) of AGM revision and contraction functions that implement full-meet belief change. Each output of the alluded binary ANN can be emulated via a binary
ANN with a single output, whereas, each belief state S; (with i € {1,...,k}) is modeled as a tuple of belief sets K| ;, K, , ..., K,

mi*

the AGM revision and contraction functions, respectively, that implement full-meet belief change.'? Then, according to Theorem 21,
there exist sentences ¢; € L with i € {1,...,10}, such that:

Based on the proof of Theorem 21, it also follows that:

@ ="aA-bA-c and @,=-aV-bV-c
@3 ="aA-b and @,=-c
@ps="bVe and @g=-bVe
@p;=aVbve and @g=T

p9=(@Vvbvc)A-(aAbAac) and ¢@;0=T
9. Conclusion

In this study, we investigated the statics and dynamics of binary Artificial Neural Networks (ANNs), from the perspective of belief-
change theory. A binary ANN is a feed-forward ANN whose inputs and outputs take binary values, and thereby is well-suited for
a plethora of practical applications (including, indicatively, image processing and pattern recognition using datasets similar to the
benchmark MNIST dataset). For this type of ANNs, we pointed out that their knowledge (expressed via their input-output relationship)
can symbolically be represented in terms of a propositional logic language; specifically, by means of a collection (tuple) of belief sets.

12 Hence, the faithful preorders that * and ~ assign at the belief sets of the language, via conditions (R) and (C), respectively, are in the spirit of the faithful preorder
described in the proof of Theorem 21.
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Furthermore, in the realm of belief change, we identified the process of changing (revising/contracting) an initial belief set to
a modified belief set, as a process of a gradual transition of intermediate belief sets. Such a gradualist approach to belief change
has been supported in several studies on human development, and better aligns with the operation of realistic agents. Along these
lines, we provided two natural Hamming-based measures of distances between these intermediate belief sets (i.e., type-A and type-B
distances), that quantify the difference between their encoded symbolic knowledge.

Following that, we demonstrated that, similar to belief change, the training process of binary ANNs, through backpropagation,
can be emulated via a sequence of successive transitions of belief sets, the distance between which is intuitively related through the
aforementioned type-B distance. We also proved that the alluded successive alterations of belief sets can be modeled by means of a
single pair of an AGM revision function and an AGM contraction function, that both implement full-meet belief change. Thus, we
have sketched the process of machine learning (specifically, training binary ANNSs) as an operation of AGM-style belief change.

The reported contributions align fundamental machine-learning operations with formalized logic theories. This alignment not only
propels forward the understanding of neural computation, but also sets a precedent for future research in the integration of Artificial
Intelligence with logical frameworks, paving the way for more interpretable and robust (neuro-symbolic) intelligent systems. Building
on this groundwork, future investigation will focus on the following key issues:

In view of the universal-approximation capabilities of ANNs [33], binary ANNs with sufficient depth and capacity can, in principle,
approximate any classification function, including those implemented by more complex and contemporary architectures such as
Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) [27]. As future work, we aim to explore such
sophisticated ANN architectures through the lens of belief-change theory, examining how the symbolic representations and belief-
change processes described in this study can be adequately enriched, adapted and scaled.

Another critical research direction is the integration of logical constraints directly into the learning process [26]. As noted in the
Introduction, this integration could enhance interpretability and robustness by guiding neural models with explicit knowledge,
reduce the amount of required training data, and improve generalization. By combining neural and logical methods, we envision
architectures where belief-change mechanisms operate alongside standard backpropagation, ensuring logical consistency and
domain-specific rule adherence throughout training. Future studies will focus on these challenges, aiming to bridge the gap
between purely data-driven approaches and more interpretable, knowledge-guided models.

Considering that full-meet belief change has been criticized for not adhering to Parikh’s notion of relevance [53,54,58] and to
Darwiche and Pearl’s approach for iterated belief change [19], it is valuable to explore alternative types of AGM-style operators
that can effectively model the training of ANNS.

As highlighted in the previous section regarding Theorem 21, further research is crucial for gaining a deeper understanding of
the relationship between the training labels of a binary ANN and the epistemic inputs ¢, and @,.

For the training of binary ANNs, we primarily employed datasets that fully characterize the corresponding input-output relation-
ships (see the running Example 17). Future research will focus on scenarios involving incomplete datasets, exploring how partial
data affects the learning process.
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