
Neural Network Models of Conditionals:

An Introduction

Hannes Leitgeb

Department of Philosophy, University of Bristol,
Hannes.Leitgeb@bristol.ac.uk

Abstract

This “lecture notes style” article gives a brief survey of neural network models

of conditionals. After short introductions into the studies of neural networks and

conditionals, we turn to the notion of an interpreted dynamical system as a unifying

concept in the logical investigation of dynamic systems in general, and of neural

networks in particular. We explain how conditionals get represented by interpreted

dynamical systems, which logical systems these conditionals obey, and what the

main open problems in this area are.
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1 Introduction

Neural networks are abstract models of brain structures capable of adapting to new

information. The learning abilities of artificial neural networks have given rise to suc-

cessful computer implementations of various cognitive tasks, from the recognition of

facial images to the prediction of currency movement.

Logic deals with formal systems of reasoning; in particular, inductive logic studies

formal systems of reasoning towards plausible but uncertain conclusions. As evidence

accumulates, the degree to which it supports a hypothesis, as measured by the logic,

should tend to indicate that the hypothesis is likely to be true.

Although sharing a joint focus on information and reasoning, until recently these

two areas developed in opposition to each other: neural networks are quantitative dy-

namic systems, while logical reasoners must be symbolic systems; networks are de-

scribed by mathematical equations, whereas logic is subject to normative statements

about how we ought to reason; neural networks have been studied by scientists, whilst

the “problem of induction” is regarded as belonging to the humanities.

At present this assessment is changing: the emergence of logical formalisms for

uncertain reasoning and the discovery that these formalisms apply to neural net pro-

cesses on the representational level give rise to the expectation that the dynamics of

artificial neural networks can be understood in terms of logically valid, and thus ra-

tional, rules of inference. As neural networks, commonsense reasoning, and scientific
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induction seem to conform to similar logical systems, a joint theoretical framework is

in the offing that might lead to new insights into the logical and cognitive basis of both

everyday reasoning and science.

2 Neural Networks as Models of Reasoning

In their famous article “A Logical Calculus of the Ideas Immanent in Nervous Activ-

ity”, McCulloch and Pitts (1943) first introduced artificial neural networks as math-

ematical abstractions from neural circuits in the brain. A McCulloch-Pitts network

consists of a set of nodes and a set of connections between these nodes. Each node can

be in one of two possible states: it fires (1), or it does not (0). Each connection is of one

of two possible kinds: along inhibitory connections, nodes receive inhibitory signals

by which they get deactivated at the next point of time (on a discrete time scale). Via

excitatory connections, signals are transferred from one node to another which have

a stimulating effect on the target node: if the node does not get inhibited, and if the

number of all incoming excitatory signals exceed or are identical to some fixed thresh-

old value that is associated with the node, then the node fires at the next point of time.

Despite appearing to be quite simple devices, McCulloch and Pitts were able to prove

that in principle every finite automaton can be realized by such a McCulloch-Pitts net-

work. Furthermore, the state transitions which take place in such networks allow for a

description in logical terms: if the activity of a node is considered as a truth value, then

the node itself may be regarded as an entity which has a truth value, i.e., as a formula

or proposition. If the “truth value” of a node does not depend on the “truth values” of

other nodes (but, say, only some given input), then it is indeed natural to regard such

nodes as atomic formulas or propositions. Accordingly, if nodes are put together in

a network, such that connections between nodes can cause the “truth values” of other

nodes to be altered, then the latter nodes may be taken to correspond to complex for-

mulas; the semantic dependency of the truth value of a complex formula on the truth

values of its component formulas is thus represented by the network topology and the

choice of thresholds.

As an example, consider the following two very elementary McCulloch-Pitts net-

works: In the first network, excitatory connections lead from modes p and q to a third

node. If this latter node has a threshold value of 2, then the node is going to fire if and

only if both p and q were active at the previous point of time. So we can associate the

formula p ∧ q with this node. In the second network, two excitatory lines lead from p

to the output node, whereas q is connected to the latter by an inhibitory edge. If e.g.

the output node has a threshold of 2, it will be activated at the next point of time if

and only if p is set to 1 and q is set to 0 (and therefore does not have any inhibitory

influence). Hence, the third node in the network corresponds to the formula p ∧ ¬q.

Here is a picture1:
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This way of associating nodes in networks with formulas in the language of clas-

sical propositional logic extends to more interesting networks with multiple layers of

nodes and with more complex patterns of excitatory and inhibitory connections. E.g., it

would be easy to extend the second network in fig. 1 by a node that represents¬(p∧¬q),

i.e., a formula which is logically equivalent to the material conditional p ⊃ q. If our

brains were, at least on some level, similar to neural networks of the McCulloch-Pitts

kind, they could thus be understood as collections of simple logical units put together

in order to calculate binary truth values from external or internal input. The calcula-

tion of the truth values of material conditionals would be a special case of this form of

computational processing.

Of course, the McCulloch-Pitts networks are, in several respects, much too simple

to be plausible models of actual neural networks in animal or human brains. In particu-

lar, they are not yet able to learn. The next decisive step in the development of artificial

neural networks was to introduce variable weights which are attached to connections

and which encode the degree of influence that nodes can exert on their target nodes via

these connections. By sophisticated learning algorithms, these weights can be adjusted

in order to map inputs to their intended outputs, e.g., facial images of persons to the

names of these persons, or verbs to their correct past tenses. Despite some initial suc-

cess in the 1950s and 1960s – mainly associated with Frank Rosenblatt’s Perceptrons

– it was only in the 1980s that articifial neural network models of cognition became

serious contenders to the dominant symbolic computation paradigm in artificial intel-

ligence. (Rumelhart et al. 1986 is still something like the “bible” of connectionism;

Rojas 1993 is a nice introduction to neural networks – have a look at these two for

more background information.) As we will explain below, the more recent neural net-

work models do not only differ from the original McCulloch-Pitts networks in terms

of complexity and learning abilities, they also differ in terms of the interpretation of

their components: instead of assigning meaning – expressed by formulas – to single

nodes, the modern approach emphasizes that it is rather patterns or sets of nodes which

receive an interpretation.

How does ‘cognition by neural networks’ relate to the traditional ‘cognition by

symbolic computation’ paradigm of cognitive science (exemplified by classic Artifi-

cial Intelligence)? According to the latter, (i) intelligent cognition demands structurally

complex mental representations, such that (ii) cognitive processing is only sensitive to

the form of these representations, (iii) cognitive processing conforms to rules, stat-

able over the representations themselves and articulable in the format of a computer

program, (iv) (standard) mental representations have syntactic structure with a compo-
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sitional semantics, and (iv) cognitive transitions conform to a computable cognitive-

transition function (we adopt this characterization essentially from Horgan&Tienson

1996, with slight deviations). Intelligent cognition is supposed to be “systematic”

and “productive” (see Fodor&Pylyshyn 1988), i.e., the representational capacities of

intelligent agents are supposed to be necessarily closed under various representation-

transforming and representation-generating operations (e.g., if an agent is able to rep-

resent that aRb, it is also able to represent that bRa, etc.). This capacity is hypothesized

to be due to the combinatorial properties of languages of mental symbols based on

a recursive grammar. A cognitive agent that conforms to the symbolic computation

paradigm has the belief that ϕ if and only if a corresponding sentence ϕ is stored in the

agent’s symbolic knowledge base. The rules that govern cognitive processes according

to the symbolic computation paradigm are either represented within the cognitive agent

as symbolic entities themselves, or they are hard-wired. Inference processes are taken

to be internalizations of derivation steps within some logical system, and the alleged

“systematicity” of inferences (see again Fodor&Pylyshyn 1988) is explained by the in-

ternal representation or hard-wiring of rules which are only sensitive to the syntactic

form of sentential representations.

Cognition by artificial neural networks, on the other hand, belongs to the so-called

dynamical systems paradigm of cognitive science which can be summarized by what

van Gelder (1998) calls the “dynamical hypothesis”: “for every kind of cognitive per-

formance exhibited by a natural cognitive agent, there is some quantitative [dynamical]

system instantiated by the agent at the highest relevant level of causal organization [i.e.,

at the level of representations], so that performances of that kind are behaviors of that

system” (van Gelder 1998, p.622). A dynamical system may be regarded as a pair of

a state space and a set of trajectories, such that each point of the space corresponds

to a total cognitive state of the system, and every point of the space lies precisely on

one trajectory. If a certain point corresponds to the system’s total cognitive state at

some time, the further evolution of the system follows the trajectory emanating at this

point. Usually, such systems are either defined by differential equations, or by differ-

ence equations, defined over the points of the state space: in the first case one speaks

of continuous dynamical systems with continuous time, while in the latter case one

speaks of discrete dynamical systems with discrete time. In the discrete case, the set

of trajectories may be replaced by a state-transition mapping, such that each trajectory

is generated by the iterated application of the mapping. A cognitive dynamical system

is a dynamical system with representations, i.e., where states and state transitions can

be ascribed a content or an interpretation. The dynamic systems paradigm assumes

that intelligent cognition takes place in the form of state-transitions in quantitative sys-

tems, i.e., systems in which a metric structure is associated with the points of the state

space, and where the dynamics of the system is systematically related to the distances

measured by the metric function. The distances between points may be regarded as a

measure of their similarity qua total cognitive states. Moreover, the typical dynami-

cal systems that are studied within the dynamical systems paradigm also have a vector

space structure, and thus they “support a geometric perspective on system behaviour”

(van Gelder 1998, p.619).

Connectionism is the most important movement within the dynamical systems

paradigm: Artificial neural networks are the dynamical systems the connectionists
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are interested in. Smolensky (1988) characterizes connectionism by the following hy-

potheses: (i) “The connectionist dynamical system hypothesis: The state of the intu-

itive processor at any moment is precisely defined by a vector of numerical values (one

for each unit). The dynamics of the intuitive processor are goverened by a differential

equation. The numerical parameters in this equation constitute the processor’s program

or knowledge. In learning systems, these parameters change according to another dif-

ferential equation.” (ii) “The subconceptual unit hypothesis: The entities in the intuitive

processor with the semantics of conscious concepts of the task domain are complex pat-

terns of activity over many units. Each unit participates in many such patterns.” (iii)

“The subconceptual level hypothesis: Complete, formal, and precise descriptions of

the intuitive processor are generally tractable not at the conceptual level, but only at

the subconceptual level.” The subconceptual level is the level of analysis that is pre-

ferred by the connectionist paradigm, or, as Smolensky expresses it, the subsymbolic

paradigm; it lies “below” the conceptual level which is preferred by the symbolic com-

putation paradigm, but “above” the neural level preferred by neuroscience.

(i) proves connectionism to belong to the dynamical systems paradigm. The sub-

conceptual unit hypothesis (ii) and the subconceptual level hypothesis (iii) highlight

the main differences between the old McCulloch&Pitts approach presented above and

modern day connectionism: by (ii), single nodes or single connections in a neural net-

work are normally not supposed to carry any meaning at all; the representing units

are distributed patterns of activation which involve a great number of nodes or even

the network topology as a whole (see van Gelder 1999 on “Distributed versus local

representation”). In more metaphorical terms: there is no “grandmother cell”, i.e.,

no single neuron which would correspond to a very complex formula which describes

your grandmother and which would fire if and only if your grandmother were per-

ceived, but rather your grandmother’s being perceived is represented by some complex

pattern of activation which spreads throughout parts of the network at the time of per-

ception. Furthermore, by (iii), if symbols can be attached to the activation patterns

of nodes or to other “global” aspects neural networks at all, the transitions from one

representing item – one pattern – to another will no longer be effected on the level

of these representing items themselves but rather on the sub-symbolic level of nodes

and edges. Therefore, it seems to be impossible to translate the computations on the

sub-symbolic level into sequences of rules on the symbolic level, let alone into logical

rules which apply to complex symbolic expressions. Thus, McCulloch&Pitts’ logical

approach to neural networks has to be given up, or so it seems. Instead of analyz-

ing cognition in terms of localized representations of formulas – “hard constraints”

– Smolensky (1988), p.18, suggests that connectionist cognition proceeds by means

of “soft constraints”: “Formalizing knowledge in soft constraints rather than hard rules

has important consequences. Hard constraints have consequences singly; they are rules

that can be applied separately and sequentially – the operation of each proceeding inde-

pendently of whatever other rules may exist. But soft constraints have no implications

singly; any one can be overridden by the others. It is only the entire set of soft con-

straints that has any implications. Inference must be a cooperative process [. . .] Fur-

thermore, adding additional soft constraints can repeal conclusions that were formerly

valid: Subsymbolic inference is fundamentally nonmonotonic.” If human reasoning

is as connectionists describe it, then McCulloch&Pitts’ account of reasoning in terms
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of neural network implementations of truth functions in classical logic can hardly be

adequate.

Even if this very last statement about McCulloch&Pitts’ theory is true, this does

not yet entail that the symbolic computation paradigm and the dynamical systems

paradigm themselves have to be completely mutually exclusive, i.e., significant aspects

of the two paradigms could actually turn out to be compatible with each other. As

Gärdenfors (1994), pp.67f, suggests, the two paradigms might in fact be complement-

ing each other: “they are best viewed as two different perspectives that can be adopted

when describing the activities of various computational devices.” New results concern-

ing symbol manipulation in networks (see e.g. Chalmers 1990, Chen&Honavar 1999)

and on rule extraction from networks (see e.g. d’ Avila Garcez et al. 2001, Hölldobler

1993, Hölldobler et al. 2004) show that there might be continuous paths of transition

from the one paradigm to the other. Indeed, hybrid systems consisting of both symbolic

and network components have been suggested (see e.g. Legendre et al. 1994). Finally,

the analysis of neural networks in terms of logical laws and rules has been pursued

quite intensively in recent years, which is the topic of this overview article.

Here are some relevant references on logical accounts of neural network cognition

(they can also be found in the bibliography – note that this is a very incomplete list

though!):

• A.S. d’Avila Garcez, D.M. Gabbay, and L.C. Lamb (200?): Connectionist Non-

Classical Logics, to appear with Springer-Verlag.

• Balkenius, C. and P. Gärdenfors (1991): “Nonmonotonic inferences in neural

networks”, in: J. Allen, R. Fikes, and E. Sandewall (eds.), Principles of Knowl-

edge Representation and Reasoning, San Mateo: Morgan Kaufmann, 32–39.

• Blutner, R. (2004): “Nonmonotonic inferences and neural networks”, Synthese

142, 143–74.

• Leitgeb, H. (2001): “Nonmonotonic reasoning by inhibition nets”, Artificial In-

telligence 128, 161–201.

• Leitgeb, H. (2004): Inference on the Low Level. An Investigation into Deduction,

Nonmonotonic Reasoning, and the Philosophy of Cognition, Dordrecht: Kluwer,

Applied Logic Series.

• Leitgeb, H. (2005a): “Interpreted dynamical systems and qualitative laws: From

inhibition networks to evolutionary systems”, Synthese 146, 189–202.

(For these lecture notes, material contained in Leitgeb 2004, 2005a, and the popular and

non-technical exposition of logic and neural networks in Leitgeb 2005b was used; the

approach in Leitgeb’s articles is greatly inspired by Balkenius and Gärdenfors 1991.)

The main idea behind these theories is that if classical logic is replaced by a dif-

ferent logical calculus – perhaps some symbolically encoded system of probabilistic or

nonmonotonic reasoning that is closer to the commonsense reasoning that our brains

are usually involved in – then a logical description or characterization of neural net-

work states and processes might be possible. Some of the authors listed above in-

deed aim at expressing in terms of logical formulas or rules what is going in a neural

6



network on the level of distributed representation. We will present one of these ap-

proaches in section 4. If some of these logical accounts of neural network cognition

were ultimately successful, then the gap between the dynamic systems paradigm and

the symbolic computation paradigm in cognitive science would be bridged, or at least

shortened significantly. This would also constitute an important step in understand-

ing what neural networks actually do; otherwise, we might be stuck with an ingenious

technical machinery which maps an input to its desired output but where the processes

which lead from the one to the other remain uninterpreted and unexplained. Progress

on logical account of neural networks might also lead to new insights in uncertain rea-

soning, induction, and even the philosophy of science – we will return to this in the

final open questions section of this article.

3 Conditionals: Natural Language and Logical Recon-

struction

Conditionals are sentences of an ‘if. . . then. . .’ form; alternatively, conditionals are

defined to be the propositions that are expressed by such sentences. So, the logical

form of a conditional is an expression of the form

If ϕ, then ψ

or, more formalized,

ϕ⇒ ψ

where ϕ is called the ‘antecedent’ of the conditional and ψ its ‘consequent’; both the

antecedent and the consequent of a conditional are sentences.

Conditionals are crucial in everyday communication, especially when we want to

convey an information that goes beyond the currently present perceptual situation.

Conditionals also play a major role in philosophical theories about dispositions, causal-

ity, laws, time, conditional norms, probability, belief, belief revision, and so forth. Fi-

nally, conditionals are related closely to quantifiers, such as ‘All ϕ are ψ’, ‘There are ϕ

which are ψ’, ‘Most ϕ are ψ’, etc. (see van Benthem 1984 for a nice discussion of this

relationship; more can be found by consulting the theory of generalized quantifiers –

see e.g. Peters&Westerstahl 2006). But note that in these latter cases, ‘ϕ’ and ‘ψ’ are

place holders for open formulas – formulas with a free variable – rather than sentences.

This is sometimes overlooked even when specialists discuss these topics:

Remark 1 (DIGRESSION) In computer science, in particular in the literature on

nonmonotonic reasoning, the following two sets of locutions are often not distinguished

properly: on the one hand,

• if ϕ then normally ψ

• if ϕ then typically ψ

• if ϕ then it is very likely that ψ
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and, on the other,

• normal ϕ are ψ

• typical ϕ are ψ

• by far most of the ϕ are ψ

In the first set, ‘ϕ’ and ‘ψ’ are to be replaced by sentences such as ‘Tweety is a bird’

and ‘Tweety is able to fly’, whereas in the second set ‘ϕ’ and ‘ψ’ are to be substituted by

generics such as birds’ and ‘flyers’ (or, in a more formalized context, by open formulas

such as ‘x is a bird’ and ‘x is able to fly’). Accordingly, if a member of the first set e.g.

expresses something probabilistic, then the probability measure in question should be

a subjective probability measure by which rational degrees of belief are attributed to

propositions. However, in the case of the members of the second set, the correspond-

ing probability measure should be a statistical one by which (limit) percentages are

attributed to properties. End of DIGRESSION.

Among conditionals in natural language, usually the following distinction is made2:

1. If Oswald had not killed Kennedy, then someone else would have.

2. If Oswald did not kill Kennedy, then someone else did.

2 is accepted by almost everyone, whilst we do not seem to know whether 1 is true.

This invites the following classification: A conditional such as 2 is traditionally called

indicative. A conditional like 1 is called subjunctive. In conversation, the antecedents

of subjunctive conditionals are often assumed or presupposed to be false: in such cases,

one speaks of these subjunctive conditionals as counterfactuals. Subjunctive and in-

dicative conditionals may have the same antecedents and consequents while differing

only in their conditional connectives, i.e., their ‘if’-‘then’ occurrences have different

meanings.

The classification into indicative and subjunctive conditionals constitutes a philo-

sophical problem in itself, but roughly one proceeds by the following rules of thumb:

• Subjunctive:

– Semantically: represents a denoted act or state not as fact but as contingent

or possible (“subjunctive mood”).

– Syntactically: is of a ‘had-would’ or, in any case, of a ‘. . .-would’ form.

• Indicative:

– Semantically: represents the denoted act or state as an objective fact (“in-

dicative mood”).

– Syntactically: is of a ‘did-did’ or a ‘does-will’ form.

(But note there are always exceptions in natural language!)

When logic developed into a serious philosophical and mathematical discipline in

the late 19th and the early 20th century, logicians quickly came up with two suggestions

of how to formalize conditionals, whether indicative or subjunctive:
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• A ⊃ B: Formalization by means of material conditionals (material implications).

• A J B: Formalization by means of strict conditionals (strict implications).

From an axiomatic point of view, the meaning of the former is given by any of the

typical deductive systems for classical propositional logic. The logical systems for

the latter were investigated intensively by C.I. Lewis, however it was only after the

axiomatic systems of normal modal logic had been developed by S. Kripke that the

analysis of A J B in terms of �(A ⊃ B) emerged as a standard (where � is the necessity

operator studied by modal logicians). On the semantic side, the meaning of ⊃ is given

by its well-known truth table, whereas the semantics of J can be stated on the basis of

the usual Kripkean possible worlds semantics of �.

These formalizations of the ‘if. . . then. . .’ in classical logic proved to be enor-

mously successful, especially in the formalization of mathematical theories and of

fragments of empirical theories. However, there was still a problem: both ⊃ and J

are monotonic, i.e., the rule
ϕ⇒ ψ

ϕ ∧ ρ⇒ ψ
is logically valid if ‘⇒’ is replaced by either

of the two connectives. On the other hand, there seem to be many instances of indica-

tive and subjunctive conditionals in natural language which are nonmonotonic, i.e., for

which the rule
ϕ⇒ ψ

ϕ ∧ ρ⇒ ψ
should not assumed to be valid. E.g., ‘If it rains, I will

give you an umbrella’ does not seem to logically imply “If it rains and I am in prison, I

will give you an umbrella’, nor does ‘If it rained, I would give you an umbrella’ seem

to logically imply “If it rained and I were in prison, I would give you an umbrella’.

Accordingly, add e.g. ‘. . .and Kennedy in fact survived all attacks on his life’ to the

antecedent of ‘If Oswald did not kill Kennedy, then someone else did’ and the result-

ing conditional does not seem acceptable anymore. Therefore, philosophical logicans

started to investigate new logical systems in which monotonicity (or strengthening of

the antecedent) would not turn out to be logically valid. Lewis (1973) is the classic

treatise on counterfactuals as nonmonotonic conditionals. Since the nonmonotonicity

phenomenon was already well known in probability theory – a conditional probability

P(Y |X) being high does not entail the conditional probability P(Y ∩ Z|X) being high –

it is not surprising that some of the modern accounts of conditionals also turned out to

have a probabilistic semantics: indeed, Adams’ (1975) famously developed a proba-

bilistic theory of indicative conditionals (see Adams 1998 for a more general overview

of probability logic). For a good state-of-the-art overview on the philosophical litera-

ture on indicative and subjunctive conditionals, see Bennett (2003).

At the same time, or actually a little later (note: philosophy was first!), theoretical

computer scientists made a similar discovery, though from a quite different point of

view: The logical resources which had proved to be so successful for the description

of the precise and unchanging world of mathematics, and which had continued to be

useful for describing the closed universe of e.g. a chess-playing piece of software,

turned out to be insufficient for the replication of commonsense reasoning. Assume

you want to describe what happens to your car when you turn the ignition key: well,

you might say, the car starts, so ‘if the ignition key is turned in my car, then the car

starts’ seems to be the proper description of the situation. But what if the gas tank is

empty? You better improve your description by saying ‘if the ignition key is turned
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in my car and the gas tank is not empty, then the car starts’. However, this could still

be contradicted by a potato that is clogging the tail pipe, or by a failure of the battery,

or by an extra-terrestrial blocking your engine, or. . . The possible exceptions to ‘if the

ignition key is turned in my car, then the car starts’ are countless, heterogeneous, and

unclear. Nevertheless, we seem to be able to communicate information with such sim-

ple conditional sentences, and, which is equally important, we are able to reason with

them in a rational way. In order to do so we make use of a little logical “artifice”: we

do not really understand ‘if the ignition key is turned in my car, then the car starts’ as

expressing that it is not the case that the ignition key is turned and the car does not start

– after all, what is negated here might indeed be the case in exceptional circumstances

– but rather that normally, or with a high probability, given the ignition key is turned,

the car starts. Instead of trying to enumerate the indefinite class of exceptions in the

if-part of a material or strict conditional, we tacitly or explicitly qualify ‘if the ignition

key is turned in my car, then the car starts’ as holding only in normal or likely circum-

stances, whatever these circumstances may look like. As a consequence, the logic of

such normality claims again differs from the logic of material or strict conditionals:

‘if Tweety is a bird, then [normally] Tweety is able to fly’ is, presumably, true, but

‘if Tweety is a penguin bird, then [normally] Tweety is able to fly’ is not, and neither

is ‘if Tweety is a dead bird, then [normally] Tweety is able to fly’ or ‘if Tweety is a

bird with his feet set in concrete, then [normally] Tweety is able to fly’. So computer

scientists found themselves in need of describing reality in terms of nonmonotonic nor-

mality conditionals on the basis of which computers should be able to draw justified

inferences about the everyday world while being unaffected by the omnipresence of

exceptions. This is the subject of nonmonotonic reasoning, one of the most vibrant

areas of theoretical computer science in the last 30 years. (See Brewka et al. 1997 for

a very nice state-of-the-art overview, Makinson 1994 for a comprehensive logical ac-

count, and Schurz&Leitgeb 2005 for a compendium of articles on cognitive aspects of

nonmonotonic reasoning. Ginsberg 1987 is outdated but still very useful if one wants

to see what nonmonotonic reasoning derives from.)

In the next section we will suggest that so-called interpreted dynamical systems

may be used to yield a semantics for nonmonotonic conditionals; the logical systems

which turn out to be sound and complete with respect to such semantics are standard

systems of conditional logic which have been studied both in philosophical logic and

nonmonotonic reasoning. Interpreted artificial neural networks will be shown to be the

paradigm case examples of interpreted dynamical systems. Although the conditionals

that are satisfied by such interpreted artificial neural networks may be regarded to be

represented distributedly by these networks, the logical rules they obey are the rules

of systems which had been developed in order to make computers cope with the real

world by means of symbolic computation, and which had been investigated even be-

fore by philosophers who intended to give a proper logical analysis of indicative and

subjunctive conditionals. Since the dynamics of state changes in interpreted neural

networks can be described correctly and completely by sets of conditionals which are

closed under the rules of such logical systems, neural networks can be understood as

nonmonotonic reasoners who, when they evolve under an input towards a state of min-

imal energy, draw conclusions that follow from premises in all minimally abnormal

cases.
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4 From Dynamical Systems to Conditionals:

Interpreted Dynamical Systems

Following Gärdenfors’ proposal mentioned above, we will study cognitive dynamical

systems from two complementary perspectives. On the one hand, cognitive dynamical

systems such as neural networks can be described in terms of differential or difference

equations, i.e., as dynamical systems. On the other hand, they seem to exemplify cog-

nitive states and processes which can be ascribed propositional contents which may in

turn be expressed by sentences or formulas; so they are cognitive agents or reasoners.

Here is an example. For the sake of simplicity, let us forget about the weights again

which are attached to the edges of a typical neural network, and let us also assume

that the activation functions which are defined for the nodes in such a network are as

straight-forward and simple as in the case of the McCulloch-Pitts networks. Then we

might e.g. end up with a simple qualitative neural networks looking like this3:

❡ ❡

❡
❡

�
�

��✒

✲

❅❅

n1

n2

n3

n4

This is a network with four nodes. n1 is connected to n2 and n3 by excitatory

connections. In contrast with traditional McCulloch-Pitts networks, there is also an

inhibitory connection which leads from n4 to the excitatory connection from n1 to n2.

So, if n4 is active, then this is not going to directly inhibit the activation of some other

node at the next point of time, but instead any activity by n4 will only have the effect

that no excitatory stimulus will be able to pass the edge from n1 to n2 at the next point

of time.

Now, say, node n1 gets activated by some external stimulus, e.g., by some sensory

signal coming from outside of the network. We will assume that such inputs always

remain constant for sufficiently long, so in our example one should think of n1 as being

activated from the outside until the computational process that we are interested in has

delivered its final output. Formally, we can describe what is going on in the following

way: the network is in an initial state s0, e.g., the state in which no node fires. This

state s0 may be regarded as a mapping from the set of nodes into the set {0, 1}, such

that each node is mapped to 0. Furthermore, the network is committed to an input s∗

which makes n0 fire but which activates no other node: it is useful to identify such an

input with the network state that the input would generate just by means of external

influences on the network. Thus, in our case, s∗ will be the state in which the node

n0 is mapped to 1 and in which all other nodes are mapped to 0. The dynamics of the

network can now be described in terms of a state transition mapping Fs∗ which is given

relative to the (constant) incoming input – s∗ – and which is applied to the initial state

s0 in order to determine the next state s1 of the network. Since no node is active in s0,

the only nodes which will be active in s1 will be those activated by means of the input

itself, i.e., n1. So we have:
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✉ ❡

❡
❡

�
�

��✒

✲

❅❅

��✒
n1

n2

n3

n4

Input s∗

s1 = Fs∗ (s0)

Accordingly, in order to determine the next state s2 of the network, the state transi-

tion mapping Fs∗ is applied again. The state transition will be such that the activity of

n1 in s1 spreads to n2 and n3, which yields:

✉ ✉

❡
✉

�
�

��✒

✲

❅❅

��✒
n1

n2

n3

n4

Input s∗

s2 = Fs∗ (s1)

If the state transition mapping is applied again, then nothing is going to happen

anymore (until the input to the network changes): hence, s3 = Fs∗ (s2) = s2. Con-

nectionists regard such a stable or equilibrium state as a network’s “answer” to the

“question” posed by the input. So, s2 – the state in which only n1, n2, n3 fire – is the

output that belongs to the input s∗. As we will also say, s2 is an s∗-stable state,

What would happen if we used a different input but the same initial state: Let s∗∗

be the state in which both n1 and n4 fire, i.e., the external input now causes these two

nodes to become active. Then we have, by the same token as before:

✉ ❡

✉
❡

�
�

��✒

✲

❅❅

��✒✁
✁
✁
✁
✁✁✕

n1

n2

n3

n4

Input s∗∗

s′
1
= Fs∗∗ (s0)

But now the state transition will be such that the activity of n4 in s1 blocks the

excitation of n2 by n1. In other words:

12



✉ ✉

✉
❡

�
�

��✒

✲

❅❅

��✒✁
✁
✁
✁
✁✁✕

n1

n2

n3

n4

Input s∗∗

s′
2
= Fs∗∗ (s′

1
)

Once again, a stable state is reached after two computation cycles, and this time the

output to the input state s∗∗ is the state in which n1, n3, n4 fire, i.e., s′
2

is an s∗∗-stable

state

This was a typical description of (simplified) network processes in the language of

the theory of dynamical systems. Out goal is now to complement this description by

one according to which cognitive dynamical systems have beliefs, draw inferences, and

so forth. So if x is a neural network, we want to say things like

• x believes that ¬ϕ

• x infers that ϕ ∨ ψ from ϕ
...

where ϕ and ψ are sentences.

Our task is thus to associate states of cognitive dynamical systems with sentences

or propositions: the states of such dynamic systems ought to carry information that can

be expressed linguistically.

Let us make this idea more precise. In order to do so, we first have to abstract from

the overly simplified dynamical systems which are given by the qualitative neural net-

works sketched above. Indeed, we want to leave open at this point what our dynamical

systems will be like – whether artificial neural networks or not – as long as they satisfy

a few abstract requirements.

Here is what we will presuppose: We deal with discrete dynamical systems with a

set S of states. On S a partial order4
6 is defined, which we will interpret as an ordering

of the amount of information that is carried by states; so s 6 s′ will be read as: s′ carries

at least as much information as s does. We will also assume that 6 is “nice” in so far

as for every two states s and s′ there is a uniquely determined state sup(s, s′) which (i)

carries at least as much information as s, which (ii) carries at least as much information

as s′, and which (iii) is the state with the least amount of information among all those

states for which (i) and (ii) hold. Formally, such a state sup(s, s′) is the supremum

of s and s′ in the partial order 6. Finally, an internal next-state function is defined

for the dynamical system, where this next-state function is like the state transition

mapping described above except that – for the moment – we will disregard possible

inputs to the system. So in the examples above, an application of the corresponding

next-state mapping e.g. would lead to the transmission of the activity of n1 to n3 once

n1 gets activated, but it will never lead to any activation of n1 itself since n1 can only

be activated by external input.

13



Summing up, we get what is called an ‘ordered discrete dynamical system’ in Leit-

geb (2005):

Definition 2 S = 〈S , ns,6〉 is an ordered discrete dynamical system :iff

1. S is a non-empty set (the set of states).

2. ns : S → S (the internal next-state function).

3. 6 ⊆ S × S is a partial order (the information ordering) on S ,

such that for all s, s′ ∈ S there is a supremum sup(s, s′) ∈ S with respect to 6.

In the example networks above, we had S = {s | s : N → {0, 1}} with N =

{n1, n2, n3, n4} being the set of nodes. In order to define a suitable information ordering

6 on S , we can e.g. use the following idea: the more nodes are activated in a state, the

more information the state carries. Then we would e.g. have:

✉ ❡

❡
❡

�
�

��✒

✲

❅❅

n1

n2

n3

n4

6

✉ ✉

✉
❡

�
�

��✒

✲

❅❅

n1

n2

n3

n4

If 6 is defined in this way, then sup(s, s′) turns out to be the union of the activation

patterns that correspond to s and s′; in such a case one may also speak of sup(s, s′)

as the “superposition of the states s and s′”. The internal dynamics of the network is

captured by the next-state mapping ns that is determined by the pattern of excitatory

and inhibitory edges in the network.

Now, just as in the example above, we consider an input which is regarded to be

represented by a state s∗ ∈ S and which is supposed to be held fixed for a sufficiently

long duration of time. The state transition mapping Fs∗ can then be defined by taking

both the internal next-state mapping and the input s∗ into account: The next state of the

system is given by the superposition of s∗ with the next internal state ns(s), i.e.:

Fs∗ (s) := sup(s∗, ns(s))

The dynamics of our dynamical systems is thus determined by iteratively applying Fs∗

to the initial state. Fixed points sstab of Fs∗ are again regarded to be the “answers”

which the system gives to s∗. Note that in general there may be more than just one

stable state for the state transition mapping Fs∗ that is determined by the input s∗ (and

by the given dynamical system), and there may also be no stable state at all for Fs∗ :

in the former case, there is more than just one “answer” to the input, in the latter case

there is no “answer” at all. The different stable states may be reached by starting the

computation in different initial states of the system.

Now we are ready to assign formulas to the states of ordered discrete dynamical

system. These formulas are supposed to express the content of the information that

14



is represented by these states. For this purpose, we fix a propositional language L

which includes (i) finitely many propositional variables p, q, r, . . ., (ii) and which is

closed under the application of the standard classical propositional connectives, i.e.,

¬,∧,∨,⊃,⊤,⊥, where ⊤ is the logical verum (a tautology) and ⊥ is the logical falsum

(a contradiction). The formulas of L do not yet include any of the nonmonotonic

conditional signs ⇒ that we are interested in. The assignment of formulas to states

is achieved by an interpretation mapping I. If ϕ is a formula in L, then I(ϕ) is the

state that carries exactly the information that is expressed by ϕ, i.e., not less or more

than what is expressed by ϕ. So we presuppose that for every formula in L there is a

uniquely determined state the total information of which is expressed by that formula.

If expressed in terms of belief, we can say that in the state I(ϕ) all the system believes

is that ϕ, i.e., the system only believes ϕ and all the propositions which are contained

in ϕ from the viewpoint of the system (compare Levesque 1990 on the modal logic of

the ‘all I know’ operator). We will not demand that every state necessarily receives

an interpretation but just that every formula in L will be the interpretation of some

state. Furthermore, not just any assignment of states to formulas will do, but we will

additionally assume certain postulates to be satisfied which will guarantee that I is

compatible with the information ordering that was imposed on the states of the system

beforehand. An ordered discrete dynamical system together with such an interpretation

mapping is called an ‘interpreted ordered system’ (cf. Leitgeb 2005a). This is the

definition stated in detail:

Definition 3 SI = 〈S , ns,6,I〉 is an interpreted ordered system :iff

1. 〈S , ns,6〉 is an ordered discrete dynamical system.

2. I : L → S (the interpretation mapping) is such that the following postulates are

satisfied:

(a) Let THI = {ϕ ∈ L |for all ψ ∈ L: I(ϕ) 6 I(ψ) }:

then it is assumed that for all ϕ, ψ ∈ L: if THI ⊢ ϕ ⊃ ψ, then I(ψ) 6 I(ϕ).

(b) For all ϕ, ψ ∈ L: I(ϕ ∧ ψ) = sup(I(ϕ),I(ψ)).

(c) For every ϕ ∈ L: there is an I(ϕ)-stable state.

(d) There is an I(⊤)-stable state sstab, such that I(⊥) � sstab.

We say that SI satisfies the uniqueness condition :iff

for every ϕ ∈ L there is precisely one I(ϕ)-stable state.

How can these postulates be justified? First of all, THI is the set of formulas which

are the interpretation of states which carry less information than, or an equal amount

of information as, any other state with an interpretation. Hence, if ϕ ∈ THI, then

the information expressed by ϕ is contained in every interpreted state of the system. If

this is spelled out in terms of belief, then we can say: if ϕ ∈ THI, then ϕ is believed

by the system in every state that has an interpretation. For the same reason, such a

belief cannot be revised by the system – it is “built” into the interpreted ordered system

independent of its current input or state, as long as the state that it is in has an inter-

pretation at all. In more traditional philosophical terms, we might say that every such
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formula is believed a priori by the system. So if a material conditional ϕ ⊃ ψ follows

logically from THI, then – since (rational) belief is closed under logical deduction –

also ϕ ⊃ ψ must be (rationally) believed by the system in every interpreted state what-

soever; indeed we may think of such a conditional as a strict a priori conditional: it is a

material conditional which is epistemically necessary in the sense of being entailed by

THI, so if � expresses entailment by THI, then for every conditional ϕ ⊃ ψ that is

derivable from THI it holds that �(ϕ ⊃ ψ). But if this so, then the system must regard

the propositional information that is expressed by ψ to be included in the propositional

information that is expressed by ϕ – from the viewpoint of the system, ϕ must express

a stronger proposition than ψ. In this case, with respect to the information ordering of

the system, the state that belongs to ψ should be “below” the state that is associated

with ϕ or at worst the two states should be equal in the information ordering. In other

words, I(ψ) 6 I(ϕ) ought to be the case. This is exactly what is expressed by postulate

2a.

Postulate 2b is more easily to explain and justify: the state that belongs to a con-

junctive formula ϕ ∧ ψ should be the supremum of the two states that are associated

with the two conjuncts ϕ and ψ, just as the proposition expressed by a conjunctive sen-

tence is the supremum of the propositions expressed by its two conjuncts in the partial

order of logical entailment.

Postulate 2c makes sure that we are dealing with systems which have at least one

“answer” – whether right or wrong – to every “question” posed to the system.

Postulate 2d only allows for interpreted ordered systems which do not end up be-

lieving a contradiction when they receive a trivial or empty information (i.e., ⊤) as an

input.

Finally, we are in the position to define what it means for a nonmonotonic condi-

tional to be satisfied by an interpreted ordered system. Consider an arbitrary condi-

tional ϕ ⇒ ψ where ϕ and ψ are members of our language L from above, and where

⇒ is a new nonmonotonic conditional sign. Then we say that a system satisfies ϕ⇒ ψ

if and only if whenever the state that is associated with ϕ is fed into the system as an

input, i.e., whenever the input represents a total belief in ϕ, the system will eventually

end up believing ψ in its “answer states”, i.e., the state that is associated with ψ is con-

tained in all the states which are stable with respect to this input. If we collect all such

conditionals ϕ ⇒ ψ which are satisfied by the system, then we get what we call the

‘conditional theory’ corresponding to the system. In formal terms:

Definition 4 Let SI = 〈S , ns,6,I〉 be an interpreted ordered system:

1. SI � ϕ⇒ ψ :iff for every I(ϕ)-stable state sstab: I(ψ) 6 sstab.

2. TH⇒(SI) = {ϕ⇒ ψ |SI � ϕ⇒ ψ }

(the conditional theory corresponding to SI).

Leitgeb (2007) gives an interpretation of the cognitive states that satisfy condition-

als in this way in terms of so-called conditional beliefs where conditional beliefs are to

be distinguished conceptually from beliefs in conditionals.
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Here is an example: consider again the simple qualitative network which we pre-

sented as a discrete ordered dynamical system above. In order to turn it into an in-

terpreted ordered system, we have to equip it with an interpretation mapping I that is

defined on a propositional language L. Let e.g. L be determined by the set {b, f ,w, p}

of propositional variables (for ‘Tweety is a bird’, ‘Tweety is able to fly’, ‘Tweety has

wings’, ‘Tweety is a penguin’, or, alternatively, ‘x is a bird’, ‘x is able to fly’, ‘x

has wings’, ‘x is a penguin’). We choose the following interpretation mapping: let

I(b) = {n1},I( f ) = {n1, n2},I(w) = {n1, n3},I(p) = {n1, n4}, and I(¬ϕ) = 1 − I(ϕ),

where the latter is to be understood in the way that whenever a node is active in I(ϕ)

then the same node is inactive in I(¬ϕ) and vice versa.5 One can show that there is

one and only one interpretation which has these properties and which also satisfies the

postulates in definition 3. Note that we have assumed I(¬ϕ) = 1 − I(ϕ) just for con-

venience, as it becomes easier then to pin down an interpretation for our example. It

is not implied at all by definition 3 that the pattern of active nodes that is associated

with a negation formula ¬ϕ is actually identical to the complement of the pattern of

active nodes that belongs to the formula ϕ; this is merely the way in which we set up

our example. One consequence of this choice of I is that e.g. the following material

conditionals turn out to be members of THI: p ⊃ b, (p ∧ w) ⊃ b,¬b ⊃ ¬p, and so

forth.

Reconsidering our example from above, the dynamics of the system which we stud-

ied back then now turns out to have the following symbolic counterparts:

✉ ❡

❡
❡

�
�

��✒

✲

❅❅

��✒
n1

n2

n3

n4

Input s∗

Total belief: b

✉ ✉

❡
✉

�
�

��✒

✲

❅❅

��✒
n1

n2

n3

n4

Input s∗

Believed: b, f ,w, ( f ∧ w), (b ∨ p), . . .

Not believed: p,¬b, . . .

Hence, SI �

b⇒ f , b⇒ w, b⇒ ( f ∧ w), (b ∨ p)⇒ f , . . .
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✉ ❡

✉
❡

�
�

��✒

✲

❅❅

��✒✁
✁
✁
✁
✁✁✕

n1

n2

n3

n4

Input s∗∗

Total belief: b ∧ p

✉ ✉

✉
❡

�
�

��✒

✲

❅❅

��✒✁
✁
✁
✁
✁✁✕

n1

n2

n3

n4

Input s∗∗

Believed: b, p,w, (b ∧ p ∧ w),¬ f , . . .

Not believed: f ,¬b, ( f ∨ ¬b), . . .

Hence, SI �

(b ∧ p)⇒ ¬ f , p⇒ b, p⇒ ¬ f , . . .

By the way: obviously, there will be lots of if-then “laws” about birds and penguins

which this interpreted ordered system will get wrong. After all, it would be very sur-

prising indeed if a little network with just four nodes were able to represent all of the

systematic relationships between birds and penguins and flying and wings faithfully.

But the example should suffice to give a clear picture of how the definitions above are

to be applied.

So we find that in this case TH⇒(SI) contains e.g. b ⇒ f , b ⇒ w, b ⇒ ( f ∧

w), (b ∨ p) ⇒ f , (b ∧ p) ⇒ ¬ f , p ⇒ b, p ⇒ ¬ f without containing e.g. b ⇒

p, (b ∨ p) ⇒ p, (b ∧ p) ⇒ f . In particular, we see that b ⇒ f ∈ TH⇒(SI) while

(b ∧ p)⇒ f < TH⇒(SI).

What can be said in general terms about the conditional theories TH⇒ correspond-

ing to interpreted dynamical systems? Here is the answer from the logical point of

view:

Theorem 5 (Soundness of C)

Let SI = 〈S , ns,6,I〉 be an interpreted ordered system:

Then TH⇒(SI) is sound with respect to the rules of the system C of nonmonotonic

conditional logic (see Kraus et al. 1990 for details on this system), i.e.:

1. For all ϕ ∈ L: ϕ⇒ ϕ ∈ TH⇒(SI) (Reflexivity)

2. TH⇒(SI) is closed under the following rules: for ϕ, ψ, ρ ∈ L,

THI ⊢ ϕ↔ ψ, ϕ⇒ ρ

ψ⇒ ρ
(Left Equivalence)

ϕ⇒ ψ, THI ⊢ ψ→ ρ

ϕ⇒ ρ
(Right Weakening)

ϕ⇒ ψ, ϕ ∧ ψ⇒ ρ

ϕ⇒ ρ
(Cautious Cut)
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3. If SI satisfies the uniqueness condition (remember definition 3), then TH⇒(SI)

is also closed under

ϕ⇒ ψ, ϕ⇒ ρ

ϕ ∧ ψ⇒ ρ
(Cautious Monotonicity)

4. TH⇒(SI) is consistent, i.e., ⊤ ⇒ ⊥ < TH⇒(SI).

So given the uniqueness assumption – an interpreted orderered system has a unique

answer to each interpreted input – the class of conditionals it satisfies is closed under

a well-known and important system of nonmonotonic conditional logic, namely the

system C of cumulative reasoning which is given by the rules listed above. Note that

monotonicity, or strengthening of the antecedent, is not a valid rule for interpreted

systems: as our example from above has shown, there may be formulas ϕ, ψ, ρ in L,

such that the conditional ϕ⇒ ψ is satisfied by a system but ϕ ∧ ρ⇒ ψ is not.

One can also show a corresponding completeness theorem for the system C with

respect to our interpreted ordered systems semantics for⇒:

Theorem 6 (Completeness of C)

Let TH⇒ be a consistent theory of conditionals closed under the rules of C while

extending a given classical theory TH as expressed by the Left Equivalence and the

Right Weakening rules:

It follows that there is an interpreted ordered system SI = 〈S , ns,6,I〉, such that

TH⇒(SI) = TH⇒, THI ⊇ TH , and SI satisfies the uniqueness condition.

This means that whatever conditional theory you might be interested in, as long as

it is closed under the rules of the system C it is possible to find an interpreted ordered

system which satisfies precisely the conditionals contained in that theory (and no other

conditionals).

It is also possible to extend these results into various directions. In particular, some

interpreted ordered systems can be shown to have the property that each of their states

s may be decomposed into a set of substates si which can be ordered in a way such

that the dynamics for each substate si is determined by the dynamics for the substates

s1, s2, . . . , si−1 at the previous point of time. Such systems are called ‘hierarchical’ in

Leitgeb (2005a). We will not go into any details, but one can prove further soundness

and completeness theorems for such hierarchical interpreted systems and the system

CL = C + Loop of nonmonotonic conditional logic, where Loop is the following rule:

ϕ0 ⇒ ϕ1, ϕ1 ⇒ ϕ2, . . . , ϕ j−1 ⇒ ϕ j, ϕ j ⇒ ϕ0

ϕ0 ⇒ ϕ j
(Loop)

Note that Loop is a weakened version of transitivity, whereas standard transitivity

is not valid, just as the rule of cautious monotonicity above is a weakened version of

monotonicity without standard monotonicity being valid. (Consult Kraus et al. 1990

for more information on CL.)

In Leitgeb (2003, 2004) further soundness and completeness theorems can be found

for more restricted classes of interpreted dynamical systems and even stronger logical

systems for nonmonotonic conditionals. E.g., the important system P of so-called pref-

erential reasoning, where P results from adding the rule
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ϕ⇒ ρ, ψ⇒ ρ

(ϕ ∨ ψ)⇒ ρ
(Or)

to the system CL, is sound and complete with respect to a class of interpreted dy-

namical systems. P is exactly Adams’ (1975) logical system for indicative conditionals

as well as the “flat” fragment of Lewis’ (1973) logic for subjunctive conditionals (‘flat’

means: if iterations and other compositions of subjunctive conditionals are ignored).

Moreover, various semantics for nonmonotonic reasoning have been found to “con-

verge” on system P as their logical calculus.

As it turns out, if artificial neural neural networks are extended by an information

ordering and an interpretation mapping along the lines explained above, then they are

special cases of interpreted ordered systems; moreover, if the underlying artificial neu-

ral network consists of layers of nodes, such that the layers are arranged hierarchically

and all connections between nodes are only from one layer to the next one, then the

interpreted ordered system is indeed a hierarchical one.

In more formal detail: 〈U,W, A,O,NET, ex〉 is an artificial neural network :iff

1. U is a finite and nonempty set of nodes.

2. W : U × U → R assigns a weight to each edge between nodes.

3. A maps each node u ∈ U to an activation mapping Au : R3 → R such that the

activation state au(t+1) of u at time t+1 depends on the previous activation state

au(t) of u, the current net input netu(t + 1) of u, and the external input ex(u) fed

into u, i.e. au(t + 1) = Au(au(t), netu(t + 1), ex(u)).

4. O maps each node u ∈ U to an output mapping Ou : R→ R such that the output

state ou(t+1) of u at time t+1 is solely dependent on the activation state au(t+1)

of u, i.e. ou(t + 1) = Ou(au(t + 1)).

5. NET maps every node u ∈ U to a net input (or propagation) mapping NETu :

(R × R)U → R such that the net input netu(t + 1) of u at time t + 1 depends on

the weights of the edges leading from nodes u′ to u, and on the previous output

states of the nodes u′, i.e. netu(t + 1) = NETu(λu′. 〈W(u′, u), ou′ (t)〉).
6

6. ex : U → R is the external input function.

We can view such networks as ordered dynamical systems if we define:

1. S = {s | s : U → R}.

2. ns : S → S with ns(s)(u) := Au(s(u),NETu(λu′. 〈W(u′, u),Ou′ (s(u′))〉), 0)

(so in the case of the internal next-state function ex(u) is set to 0).

3. 6 ⊆ S × S with s 6 s′ iff for all u ∈ U: s(u) 6 s′(u).

(sup(s, s′) is thus simply max(s, s′).)
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〈S , ns,6〉 is an ordered discrete dynamical system, such that Fs∗ (s) =

sup(s∗, ns(s)) = max(s∗, ns(s)) which entails that Fs∗ (s)(u) =

max(s∗(u), ns(s)(u)) = max(s∗(u), Au(s(u),NETu(λu′. 〈W(u′, u),Ou′ (s(u′))〉), 0)),

which corresponds to the assumption that the external input to a network interacts with

the current activation state of the network by taking the maximum of both. Given this

assumption, the dynamics of artificial neural networks and the dynamics of the cor-

responding ordered dynamical systems coincide. If the network is layered, then the

corresponding ordered system is hierarchical. Stable states are regarded as the relevant

“answer” states just as in the standard treatment of neural networks. If such networks

are equipped with a corresponding interpretation mapping I as defined above, they sat-

isfy conditional theories which are closed under the rules of well-establish systems of

logic for nonmonotonic conditionals.

Furthermore, on the level of representation or interpretation we have:

• In interpreted ordered systems, propositional formulas are represented by total

states s of the system; in particular, in interpreted neural networks, propositional

formulas are represented by patterns of activity distributed over the nodes of the

network.

• In interpreted ordered systems, nonmonotonic conditionals are represented by

the overall dynamics of the system; in particular, in interpreted neural networks,

nonmonotonic conditionals are represented by the network topology and by the

way weights are distributed over the connections of the network. It is not single

edges which correspond to conditionals, but the conditional theory that belongs

to an interpreted network is a set of soft constraints that is represented by the

network as a whole.

Thus, in contrast with the old McCulloch-Pitts idea, the representation of formulas

in interpreted dynamical systems is distributed, as suggested by connectionists. At

the same time, the set of conditionals satisfied by an interpreted dynamical system

is closed under the rules of systems of nonmonotonic conditional logic which were

introduced, and which have been studied intensively, by researchers in the tradition of

the symbolic computation paradigm of cognitive science. Subsymbolic inference may

be fundamentally nonmonotonic, as claimed by Smolensky, but this does not mean that

it cannot be formalized in logical terms – it only means that the formalization has to be

given in terms of systems of nonmonotonic reasoning.

The dynamical systems paradigm and the symbolic computation paradigm may

thus be regarded as yielding complementary perspectives on the one and the same cog-

nitive system. Moreover, since nonmonotonic conditionals have been shown to have

interpretations in terms of (i) conditional probability measures, and (ii) orderings of

possible worlds by degrees of similarity to the actual world or by degrees of normality

or plausibility, the nonmonotonic conditionals that are satisfied by interpreted dynam-

ical systems may be taken to represent aspects of either of these important semantic

structures which are also used to analyze human communication and reasoning by

means of conditionals.
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5 Some Open Questions

Here is an (incomplete) to-do-list in this area of research:

Extending soundness/completeness results: How can the logical systems discussed

by Kraus et al. (1990) and Lehmann&Magidor (1992) be characterized in terms of

connectionistically plausible and elegant constraints on interpreted dynamical systems?

(So far there are only partial answers to this question, sometimes relying on very re-

stricted classes of dynamic systems.) Which logical systems do we get if we drop the

uniqueness assumption (see definition 3)? How can full-fledged systems of conditional

logic for subjunctive conditionals, for which nesting of conditionals and the applica-

tion of propositional connectives to such conditionals is well-defined, be represented

by means of interpreted dynamical systems?

Characterizing learning in neural networks by logical rules: As we have seen,

state transitions in a fixed (possibly, trained) neural network can be described in terms

of conditionals. However, it is as yet unknown how learning processes in networks – by

which the weights in a network change under the influence of a learning algorithm and

training data – can be represented by logical rules. Learning schemes such as Hebbian

learning or backpropagation might translate into particular systems of inductive logic

in which inferences can be drawn from both factual training data and conditionals to

learned conditionals. In order to facilitate this study, computer implementations of

interpreted networks and their learning algorithms will be crucial.

Applying the theory to open problems in uncertain reasoning: The results achieved

by the previous tasks are expected to feed back on open problems in uncertain reason-

ing. E.g.: Belief revision (see Gärdenfors 1988 for the classic reference, and Hansson

1999 for a textbook) was created as a theory for the “one-shot” revision of beliefs by

a single piece of evidence. Attempts of extending the theory to iterated occurrences

of evidence led to a multitude of suggestions lacking clear philosophical interpreta-

tion. By means of the results achieved in this area, it might be possible to understand

evidence-induced changes of networks as iterated belief revisions. We hypothesise that

different schemes of iterated revision correspond to, and can be understood as, different

learning algorithms for neural networks.

Applying the theory in philosophy of science: In philosophy of science, it was real-

ized early on that new empirical evidence can have the effect that previous hypotheses

must be withdrawn, since an agent might learn that what she had regarded likely is

actually not. As Flach (2000) argues, the same logics that govern valid commonsense

inferences can be interpreted as logics for scientific induction, i.e., for data constituting

incomplete und uncertain evidence for empirical hypotheses. Schurz (2002) demon-

strates that scientific laws are subject to normality or ceteris paribus restrictions that

obey the logic of nonmonotonic reasoning. At the same time, the study of neural net-

works is expected to transform our philosophical understanding of science: Churchland

(1989) presents networks as models of scientific theories and regards prototype repre-

sentations in networks as a system’s explanatory understanding of its inputs. Bechtel

(1996) explains scientific model building in terms of the satisfaction of soft constraints

represented in networks. Bird (2002) observes: “The time is ripe for a reassessment of

Kuhn’s earlier work in the light of connectionist and neural-net research”. Is it possible

to throw some new light on these trends in philosophy of science on the basis of new

findings on logical accounts of neural network reasoning and learning?
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Notes

1This image is taken from Leitgeb (2005b).
2The following famous example is by Ernest Adams.
3Such networks are called ‘inhibition networks’ in Leitgeb (2001).
4A partial order 6 (on S ) is a reflexive, antisymmetric, and transitive binary relation, i.e.: for all s ∈ S :

s 6 s; for all s, s′ ∈ S : if s 6 s′ and s′ 6 s then s = s′; for all s1, s2, s3 ∈ S : if s1 6 s2 and s2 6 s3 then

s1 6 s3.
5So the 1 here is actually the constant 1-function, i.e., the function that maps each node to the activation

value 1.
6λu′. 〈W(u′, u), ou′ (t)〉 is the function that maps u′ to the pair 〈W(u′, u), ou′ (t)〉.
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