
Systems That Learn

An Introduction to Learning Theory

Second Edition

Sanjay Jain

Daniel Osherson

James S. Royer

Arun Sharma

A Bradford Book

The MIT Press

Cambridge, Masssachusetts

London, England



Contents

Series Foreword ix

Preface xi

I Fundamentals of Learning Theory 1

1 Introduction 3

1.1 Empirical inquiry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Paradigms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Some simple paradigms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Discussion of the paradigms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Formalities 15

3 Identi�cation 27

3.1 Languages as theoretically possible realities . . . . . . . . . . . . . . . . . . . . . 27

3.2 Language identi�cation: Hypotheses, data . . . . . . . . . . . . . . . . . . . . . . 31

3.3 Language identi�cation: Scientists . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.4 Language identi�cation: Scienti�c success . . . . . . . . . . . . . . . . . . . . . . 35

3.5 Identi�cation as a limiting process . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.6 Characterization of identi�able L � E . . . . . . . . . . . . . . . . . . . . . . . . 40

3.7 Some alternative paradigms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.8 Memory-limited scientists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.9 Second paradigm: Identi�cation of functions . . . . . . . . . . . . . . . . . . . . . 48

3.10 Characterization of identi�able C � R . . . . . . . . . . . . . . . . . . . . . . . . 51

3.11 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.12 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4 Identi�cation by Computable Scientists 61

4.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2 Language identi�cation by computable scientist . . . . . . . . . . . . . . . . . . . 63

4.3 Function identi�cation by computable scientist . . . . . . . . . . . . . . . . . . . 69

4.4 Parameterized scientists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.5 Exact identi�cation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

II Fundamental Paradigms Generalized 89

5 Strategies for Learning 91

5.1 Strategies for language identi�cation: Introduction . . . . . . . . . . . . . . . . . 91

5.2 Constraints on potential conjectures . . . . . . . . . . . . . . . . . . . . . . . . . 92

v



chapters/front.tex

vi Contents

5.3 Constraints on the use of information . . . . . . . . . . . . . . . . . . . . . . . . 99

5.4 Constraint on convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.5 Constraints on the relation between conjectures . . . . . . . . . . . . . . . . . . . 107

5.6 Strategies for function identi�cation . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.7 Bibliographic notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6 Criteria of Learning 127

6.1 Criteria for function identi�cation . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.2 Criteria of language identi�cation . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

6.3 Bibliographic notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

6.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

7 Inference of Approximations 151

7.1 Approximations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

7.2 Some background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

7.3 Approximate explanatory identi�cation . . . . . . . . . . . . . . . . . . . . . . . 154

7.4 Uniform approximate explanatory identi�cation . . . . . . . . . . . . . . . . . . . 158

7.5 Bibliographic notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

7.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

8 Environments 167

8.1 Inaccurate data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

8.2 Texts with additional structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

8.3 Multiple texts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

8.4 Bibliographic notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

8.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

III Part III: Additional topics 195

9 Team and Probabilistic Learning 197

9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

9.2 Motivation for identi�cation by teams . . . . . . . . . . . . . . . . . . . . . . . . 197

9.3 Team identi�cation of functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

9.4 Identi�cation by probabilistic scientists . . . . . . . . . . . . . . . . . . . . . . . . 201

9.5 Team

m

n

Ex-identi�cation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

9.6 Team and probabilistic identi�cation of languages . . . . . . . . . . . . . . . . . . 213

9.7 Bibliographic notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

9.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

10 Learning with Additional Information 221

10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

10.2 Upper bound on the size of hypothesis . . . . . . . . . . . . . . . . . . . . . . . . 222

10.3 Approximate hypotheses as additional information . . . . . . . . . . . . . . . . . 235

10.4 Bibliographic notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

10.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245



chapters/front.tex

Contents vii

11 Learning with Oracles 251

11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251

11.2 Oracle scientists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251

11.3 Function identi�cation by oracle scientists . . . . . . . . . . . . . . . . . . . . . . 252

11.4 Language identi�cation by oracle scientists . . . . . . . . . . . . . . . . . . . . . 257

11.5 Bibliographic notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259

11.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259

12 Complexity Issues in Identi�cation 261

12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261

12.2 Mind change complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262

12.3 Number of examples required . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264

12.4 An axiomatic approach to complexity of convergence . . . . . . . . . . . . . . . . 267

12.5 Strictly minimal identi�cation of languages . . . . . . . . . . . . . . . . . . . . . 268

12.6 Nearly minimal identi�cation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273

12.7 Bibliographic notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275

12.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277

13 Beyond Identi�cation by Enumeration 281

13.1 Gold's and B�arzdi�n�s' conjectures . . . . . . . . . . . . . . . . . . . . . . . . . . . 281

13.2 Fulk's refutation of B�arzdi�n�s' conjecture . . . . . . . . . . . . . . . . . . . . . . . 282

13.3 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286

Bibliography 289

Notation Index 303

Author and Subject Index 309



1 Introduction

The present chapter introduces the subject matter of this book, namely, formal models

of empirical inquiry. We begin by indicating the issues that motivate our study. Next

come illustrations of models, followed by discussion of their principal features.

x1.1 Empirical inquiry

Many people who have re
ected about human understanding and its origins have noticed

an apparent disparity. Bertrand Russell [164] (cited in Chomsky [40]) put the matter

this way:

How comes it that human beings, whose contacts with the world are brief and

personal and limited, are nevertheless able to know as much as they do know?

Focusing attention on intellectual development, the disparity is between the information

available to children about their environment, and the understanding they ultimately

achieve about that environment. The former has a sparse and 
eeting character whereas

the latter is rich and systematic.

To better understand the issue, consider the acquisition of a �rst language.

1

A few

years of casual contact with the ambient language su�ces for the infant to master a

grammatical system so complex that it still de�es description by linguists. Within broad

limits, the particular sample of language to which the infant is exposed does not seem to

a�ect the grammatical principles induced, since children raised in di�erent households

within the same linguistic community are able to communicate e�ectively. Moreover, the

child's learning mechanism is apparently built to acquire any human language, for chil-

dren of di�erent racial or ethnic backgrounds are able to acquire the same languages with

the same facility. Evidently, some mental process (perhaps largely unconscious) allows

children to convert the fragmentary information available about the ambient language

into systematic principles that describe it generally.

The same kind of process underlies other tasks of childhood. By an early age the

child is expected to master the moral code of his household and community, to assimilate

its artistic conventions and its humor, and at the same time to begin to understand

the physical principles that shape the material environment. In each case the child is

1

For an overview and guide to the literature, see Pinker [148].
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required to convert data of a happenstance character into the understanding (implicit or

explicit) that renders his world predictable and intelligible.

It is not surprising that so little is known about the mental processes responsible for

children's remarkable intellectual achievements. Even elementary questions remain the

subject of controversy and inconclusive �ndings. For example, there is little agreement

about whether children use a general-purpose system to induce the varied principles

bearing on language, social structure, etc., or whether di�erent domains engage special-

purpose mechanisms in the mind.

2

The disparity just noted for intellectual development has also been observed in the

acquisition of scienti�c knowledge by adults. Like the child, scientists typically have

limited access to data about the environment, yet are sometimes able to convert this data

into theories of astonishing generality and veracity. At an abstract level, the inquiries

undertaken by child and adult may be conceived as a process of theory elaboration

and test. From this perspective, both agents react to available data by formulating

hypotheses, evaluating and revising old hypotheses as new data arrive. In the favorable

case, the succession of hypotheses stabilizes to an accurate theory that reveals the nature

of the surrounding environment. We shall use the term \empirical inquiry" to denote

any enterprise that possesses roughly these features.

It is evident that both forms of empirical inquiry | achieved spontaneously in the

early years of life, or more methodically later on | are central to human existence and

cultural evolution. It is thus no accident that they have been the subject of speculation

and inquiry for millenia.

3

The present book describes a set of conceptual and math-

ematical tools for analyzing empirical inquiry. Their purpose is to shed light on both

intellectual development and scienti�c discovery. They may also be of use in guiding

the development and evaluation of arti�cial systems of empirical inquiry (such as those

described in Langley, Simon, Bradshaw, and Zytkow [123]).

Since the pioneering studies of Putnam [155], Solomono� [184, 185], Gold [80], and

the Blums [18] a large technical literature has been devoted to the development and use

of the tools at issue here. Papers within this tradition are spread over journals and books

in mathematics, computer science, linguistics, psychology, and philosophy. Our topic has

variously been called \The Theory of Scienti�c Discovery," \Formal Learning Theory,"

\The Theory of Machine Inductive Inference," \Computational Learning Theory," and

\The Theory of Empirical Inquiry." We shall use all these terms to describe the collection

of de�nitions, examples, and theorems that emerge from the literature. Our goal is to

2

For discussion, see Chomsky [40], Pinker [148], and Osherson and Wasow [142].

3

See Russell [163] for an historical overview.
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organize part of this material, and to render it accessible to students and researchers

interested in empirical inquiry. Along the way we shall provide pointers to areas given

little coverage in these pages.

x1.2 Paradigms

The material to be presented facilitates the de�nition and investigation of precise models

of empirical inquiry. Such models are often referred to as \paradigms." A paradigm

o�ers formal reconstruction of the following concepts, each central to empirical inquiry.

1.1 (a) a theoretically possible reality

(b) intelligible hypotheses

(c) the data available about any given reality, were it actual

(d) a scientist

(e) successful behavior by a scientist working in a given, possible reality

The concepts �gure in the following picture of scienti�c inquiry, conceived as a game

between Nature and a scientist. First, a class of \possible worlds," or possible realities, is

speci�ed in advance; the class is known to both players of the game. Nature is conceived

as choosing one member from the class, to be the actual world; her choice is initially

unknown to the scientist. Nature then provides a series of clues about the actual reality.

These clues constitute the data upon which the scientist will base his hypotheses. Each

time Nature provides a new clue, the scientist may produce a new hypothesis. The

scientist wins the game if his hypotheses ultimately become stable and accurate. Whether

the scientist can win the game depends on the breadth of the set of possible worlds. The

more constrained Nature's choice of actual world, the more likely the scientist is to

discover it.

Di�erent paradigms formalize this picture in di�erent ways, resulting in di�erent

games. To �x our ideas, let us now examine some simple paradigms, without concern for

rigor at this point.

x1.3 Some simple paradigms

Call a set of positive integers \describable" just in case it can be uniquely described

using an English expression. For example, the set f2; 4; 6; 8; : : :g is one such set since it is
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uniquely described by the expression \all positive, even integers." The describable sets

are the theoretically possible realities of the current paradigm (in the sense of 1.1a).

To play the game, it will help to focus on a proper subset of all these realities,

namely, the subcollection C de�ned as follows. C contains all sets that consist of every

positive integer with a sole exception. Plainly, every set in C is describable; the set

f1; 3; 4; 5; 6; : : :g, for example, is uniquely described by \all positive integers except for

2."

In what follows, we shall play the role of Nature; you play the role of scientist. In

our role as Nature, we select one member of C, and you (in your role as scientist) must

discover the set that we have in mind. Clues about our choice will be provided in the

following way. First, we shall order all the elements of the set in the form of a list; then

the list will be presented one element at a time. There is no constraint on the list made

from the chosen set, except that it must contain all the elements of the set, and only

these. For example, one list of the set f2; 3; 4; 5; 6;7;8; 9; : : :g is: 3; 2; 5; 4; 7;6;9;8; : : :.

Aside from seeing the list's members presented one by one, you are provided no further

information about it. A list of our set corresponds to 1.1c, the data made available about

the possible reality chosen to be actual.

Each time a number is presented, you may announce a conjecture about the set

chosen from C at the beginning of the game (guesses about how we listed the chosen set

are not required). Your guesses must take the form of English expressions that uniquely

describe a set of positive integers. It is these expressions that constitute the intelligible

hypotheses of our paradigm (see 1.1b). Your conjectures at any given moment will be

based exclusively on the data available to you, so for purposes of this game you may be

construed as a system that translates data into hypotheses. Indeed, any such system is

considered to be a \scientist" within the current paradigm, in the sense of 1.1d.

All of items 1.1a-d have now been speci�ed. As for 1.1e, we stipulate that you win

the game just in case you make only a �nite number of conjectures, and the last one is

correct.

Let's play. We have selected a set and ordered it. Here is the �rst member of the

list: 1. Guess, if you like. Next member: 3. Guess again, if you like. To abbreviate,

here are the next ten members of the list: 4; 5; 6; 7; 8; 9;10;11;12;13. Perhaps your

latest conjecture is \all positive integers except for 2." That is a reasonable conjecture.

However, it is wrong since according to our list the next number is 2. So go ahead and

guess again. Here are the subsequent ten members: 15; 16; 17; 18; 19; 20; 21; 22; 23; 24.

Perhaps now your latest conjecture is \all positive integers except for 14."

The game goes on forever, so we interrupt it at this point to consider the paradigm
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in more general terms. Let us say that a \guessing rule" is a set of instructions for

converting the clues received up to a given point into a conjecture about the chosen set.

Your own guesses may well have been chosen according to some guessing rule, and you

might take a moment to attempt to articulate it.

Now consider the following guessing rule:

1.2 Guessing rule: Suppose that S is the set of numbers that have been presented

so far. Let m be the least positive integer that is not a member of S. (S must

be �nite, so such a number certainly exists.) Emit the conjecture \all positive

integers except for m" unless this was your last conjecture (in which case make

no conjecture at all).

To illustrate, if the numbers presented so far were f4; 5; 8; 1g, then rule 1.2 would direct

you to conjecture \all positive integers except for 2" (unless you had just made this

conjecture, in which case you would not do it again). You should be able to convince

yourself of the following fact:

1.3 Fact: No matter which set was chosen from C at the start of the game, and no

matter what list was made from that set, consistent application of guessing rule

1.2 is a winning strategy; that is, if you use rule 1.2, then you win in all cases.

Now let us modify the game by adding the set of all positive integers (without excep-

tion) to the initial collection C. So our choice of set as \actual reality" is expanded to

include one new possibility, namely, f1; 2; 3; 4; 5; : : :g. This changes matters quite a bit.

For example, guessing rule 1.2 is no longer guaranteed to succeed at the game. Indeed,

it is clear that, faced with any listing for the new set f1; 2; 3; 4;5; : : :g, the rule changes

its guess in�nitely often, and hence never produces a last, accurate conjecture. A more

signi�cant fact is the following.

1.4 Fact: No guessing rule is guaranteed to win the new game. That is, for every

guessing rule R there is a set in the (expanded) collection C and some way to list

the set such that R fails to produce a last, correct conjecture on the list.

The techniques needed to prove Fact 1.4 will be presented in Chapter 3. You can grasp

the matter intuitively, however, by playing the new game with a friend. This time you

play the role of Nature, and try to defeat your opponent with the following tactic. Begin

with the list 2; 3; 4; 5; 6;7; : : :, extending it until your friend announces the hypothesis

\all positive integers except 1." Suppose that your list must be extended to 33 for this to

happen. Then continue your list with 1; 35; 36; 37; 38;39;40; : : : until you have extracted
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the hypothesis \all positive integers except 34." Suppose that the list has reached 61

at this point. Then continue with 34; 63; 64; 65;66;67; : : : until you hear \all positive

integers except 62." If you continue in this devious way, one of two things will happen.

Either:

(a) your friend will go for the bait each time, and thereby change her hypothesis in�nitely

often, or

(b) she will at some point refuse to adopt the conjecture that you intended for her.

In both cases your friend will fail to make a last, correct conjecture about the list you

have made. Moreover, in both cases the list you make belongs to the game. To see this,

consider the two cases. In case (a), you will end up listing every positive integer. Since

this set is a member of the initial collection C, your list represents a legitimate choice for

Nature at the start of the game. In case (b), you will end up listing some set consisting

of every positive integer with a sole exception. This set is also in C. Thus, in both cases

your friend's guessing rule fails on some list for a set that might have been Nature's

initial choice. Hence her guessing rule is not guaranteed to win the new game, which

proves 1.4. (A more rigorous version of the proof is given in Chapter 3.)

Let's play the last game again (with the extended collection C), but this time within

a slightly di�erent paradigm. Instead of being able to arbitrarily order the chosen set,

Nature is now required to present the set in increasing order. So there is just one possible

listing of any given set in C. For this paradigm, it is easy to formulate a guessing rule

that wins in all cases (try stating such a rule).

The foregoing variations point to a basic question about any, well-de�ned paradigm.

The question is: For what collections of realities can winning guessing rules be formu-

lated? This question is a dominant theme of our book.

x1.4 Discussion of the paradigms

We now comment on various aspects of the paradigms just introduced. In fact, our

remarks are relevant to almost all of the paradigms discussed in this book.

x1.4.1 Possible realities as sets of numbers

Limiting the possible realities to sets of positive integers is not as austere as it might seem

at �rst. This is because integers may be conceived as codes for objects and events found

in scienti�c or developmental contexts. For example, the sentences to which children
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are exposed in the course of language acquisition (like all sentences of human language)

are complex structures involving phonetic, syntactic, and semantic levels of representa-

tion. Their complexity notwithstanding, it may nonetheless be possible to enumerate

all possible sentences in a kind of alphabetical order in something like the way pairs,

triples, or quadruples of integers can be enumerated.

4

If the enumeration can be carried

out by a computable process, then it yields a useful correspondence between sentences

and integers, and the latter can be used as codes for the former. In this case, a set of

integers corresponds to a language, namely, the language whose sentences are coded by

the integers in the set.

5

Notice that a correspondence of this kind requires that the set of coded entities

be denumerable, i.e., have the same cardinality as the integers serving as codes. It

might be thought that the restriction to denumerable domains excludes scienti�c contexts

bearing on physical quantities whose values are arbitrary real numbers. However, the

rational numbers provide su�cient precision in scienti�c practice, and the rationals are a

denumerable set. So integers can also be used to code many situations involving physical

quantities.

For mathematical simplicity, the possible realities �guring in this book are taken

to be sets of numbers, or else functions from numbers to numbers. We limit ourselves

thereby to studying scienti�c or developmental contexts in which the relevant objects of

inquiry (like sentences) can be coded as integers. It is our belief that much insight into

empirical investigation can be achieved within this limitation, a claim that the reader

will ultimately have to evaluate for him- or herself.

6

There is an additional, noteworthy property of the sets and functions that play the

role of possible realities in most of what follows. They are \computable" in the sense

of being manipulable and recognizable by computer programs (this will be made precise

in the next chapter). It is important to recognize that most sets of numbers and most

numerical functions are not computable. In fact, from the point of view of their respective

cardinalities, the computable functions stand in the same relation to the class of all

numerical functions as do the integers to the real line. It follows that by limiting attention

to possible realities of a computable nature our theory does not embrace every conceivable

scienti�c situation (we return to this point in Chapter 3). Once again, we believe that

this restriction leaves a large and important class of scienti�c contexts within the purview

4

For exposition of this kind of enumeration, see Boolos and Je�ery [21, Chapter 1].

5

For more extended discussion see Weihrauch [192, Chapter 3.3].

6

Paradigms involving more expressive scienti�c languages are discussed in Martin and Osherson

[127, 128].
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of the theory, although we admit to having no proof of this claim.

Another concession to mathematical simplicity can be noted here. Starting in the

next chapter, the natural numbers f0; 1; 2; 3; : : :g will be used to construct possible real-

ities, rather than the positive integers f1; 2; 3; 4; : : :g. This choice facilitates the use of

techniques and results from the theory of recursive functions.

x1.4.2 Intelligible hypotheses

We take hypotheses to be symbolic representations of a real or �ctitious world. For

example, most hypotheses announced in scienti�c journals are written in the symbols

of the Roman alphabet, supplemented with mathematical notation. Alternatively, the

alphabet might be drawn from some system of neural notation used by the brain to

represent the structure of the ambient language.

To be intelligible, a symbolic system must provide �nite representations of the reality

it is designed to depict, even if that reality is in�nite in size. For example, the English

expressions like \all positive integers except 5" is a �nite string of letters that uniquely

describes an in�nite set. Computer programs can also be conceived as �nite descriptions

of sets of numbers. Speci�cally, program P can be taken as specifying the set of all

numbers n such that P given input n eventually stops running. This is the approach

described in the next chapter and used throughout the sequel. The emphasis on computer

programs as hypotheses stems in part from the desire for technological applications.

Moreover, it is felt that programs stand in a particularly intimate relation to the sets

they describe, inasmuch as they provide a means for recognizing the members of the set.

In contrast, the English description \all positive integers that Gauss ever wrote down"

uniquely describes a set of numbers, but gives little access to its members.

x1.4.3 Scientists

In our sample paradigm above, scientists were conceived as systems that convert �nite

sequences of numbers into hypotheses. The scientist may thus be pictured as traveling

down an in�nite list of numbers, examining the �nite amount of data available at any

point in the voyage, and emitting hypotheses from time to time about the contents of the

entire list, including the in�nite, unseen portion. For most of the book, it will be assumed

that scientists are mechanical, that is, simulable by a computer. Indeed, we shall usually

equate scientists with computer programs. It will sometimes prove helpful, however, to

remove the assumption of computability from our conception of scientists, in which case
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they will be conceived as arbitrary functions mapping �nite data-sets into conjectures.

This liberal attitude will allow us to separate information-theoretic from computability-

theoretic aspects of scienti�c discovery, as will become clearer in Chapter 3.

On the other hand, much of our attention will also be devoted to scientists drawn from

narrow subsets of the class of computable processes. That is, we shall consider scientists

who operate under various constraints concerning the time devoted to processing data,

available memory, selection of hypotheses, ability to change hypotheses, etc. Study of

such restrictions will shed light on several issues, including:

(a) the impact of various design features on the performance of computers as scientists,

for example, the feature that prevents a computer from abandoning an hypothesis that

is consistent with all available data;

(b) the prospects for success by scientists who possess human characteristics, such as

time and memory limitations; and

(c) the wisdom of conforming to \rational policies" such as never producing an hypothe-

sis falsi�ed by current data, or never producing an hypothesis that describes a theoretical

possibility ruled out in advance.

It will be seen that exploration of such issues sometimes leads to unexpected conclusions.

x1.4.4 Success versus con�dence about success

To be successful on a list of numbers, the scientist must produce a �nal, correct con-

jecture about the contents of the entire list. She is not required, however, to \know"

that any speci�c conjecture is �nal. To see what is at issue, consider the �rst paradigm

introduced above in which C contains just the sets of positive integers with a sole excep-

tion. Upon seeing 2; 3; 4; : : :; 1000, a scientist might be con�dent that the list contains

the set of positive integers except for 1. But her con�dence does not prevent the list from

continuing this way: 1; 1002; 1003;1004 : : : ; 2000. Con�dence at 2000 that the list holds

all positive integers except for 1001 is equally unfounded, since the list may continue:

1001; 2002; 2003; 2004; : : :. Thus, the scientist is never justi�ed in feeling certain that her

latest conjecture will be her last.

On the other hand, Fact 1.3 does warrant a di�erent kind of con�dence, namely,

that systematic application of guessing rule 1.2 will eventually lead to an accurate, last

conjecture on any list generated from a member of C. The relevant distinction may be

put this way: If we know that the actual world is drawn from C, then we can be certain
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that our inquiry will ultimately succeed (if the right guessing rule is applied). But we

cannot be certain at any given stage of our inquiry that success has �nally arrived.

This asymmetry is a fundamental characteristic of empirical inquiry. In the usual

case, scientists can never feel completely con�dent that their current theory will remain

uncontradicted by tomorrow's data. They can only hope that the mental system by

which they select hypotheses is adapted to the reality they face. Distinguishing these

two issues allows us to focus on scienti�c success itself, rather than on the secondary

question of warranted belief that success has been obtained. Thus, our question will

typically be:

What kind of scientist reliably succeeds on a given class of problems?

rather than:

What kind of scientist \knows" when she is successful on a given class of

problems?

Clarity about this distinction was one of the central insights that led to the mathematical

study of empirical discovery (see Gold [80, pp. 465-6]).

x1.4.5 Criteria of success

Compare guessing rule 1.2 to the following, revised version.

1.5 Guessing rule: Suppose that S is the set of numbers that have been presented

so far. Let m be the least positive integer that is not a member of S. If 2

m

is not

a member of S, make no conjecture. Otherwise, emit the conjecture \all positive

integers except for m" unless this was your last conjecture (in which case make

no conjecture at all).

Thus, 1.5 is just like 1.2 except that it imposes a possible delay in producing the conjec-

ture \all positive integers except for m." Although the delay is pointless, it is easy to see

that systematic use of 1.5, as with use of 1.2, guarantees success in the �rst paradigm

introduced above.

Rule 1.5 highlights the liberal attitude embodied in our current de�nition of scienti�c

success. We require that the scientist produce a �nal conjecture that is correct, but there

is no requirement that this �nal conjecture come as quickly as possible. Let us admit,

however, that scientists who examine extravagant amounts of data before making a �nal,

correct conjecture might be considered as useless as scientists who never guess correctly
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at all. So we might be led to formulate more stringent criteria of scienti�c success that

impose standards of e�ciency. Indeed, this is the topic of Chapter 12, below.

Although liberal with respect to e�ciency, our present success criterion is stringent

about accuracy. To succeed on a given list, the scientist must produce an English descrip-

tion for exactly the numbers in the list, with no omissions or additions. Such accuracy

is required in order to make our games interesting, since the sets in play di�er by only a

few numbers. But what if the initial collection C were such that every pair of members

was in�nitely di�erent? In this case, a small error in the scientist's �nal conjecture might

be tolerable. Success in this approximate sense is the topic of Chapters 6 and 7.

More generally, we shall investigate success criteria that are liberal and stringent in a

wide variety of ways. In addition to e�ciency and accuracy, we shall be concerned with

tolerance for noisy data, with di�erent senses of \last conjecture on a list," with behavior

on lists outside of a given scientist's competence, and so forth. Of two, distinct criteria

we often ask: What kinds of scienti�c problems can be solved under one criterion that

cannot be solved under the other? In this way we hope to shed light on the limits of

empirical inquiry that emerge from di�erent kinds of scienti�c ambition.

7

Beyond what has been mentioned so far, many additional topics will occupy the

chapters of the present book. But enough preliminaries! To get started in a serious way,

it is now necessary to review a body of notation and conventions drawn from the theory

of computation. This is the topic of the next chapter. Subsequently, in the remaining

two chapters of Part I, we formally de�ne and investigate some elementary paradigms.

Summary

The Theory of Machine Inductive Inference (or \Computational Learning Theory," etc.)

attempts to clarify the process by which a child or adult discovers systematic generaliza-

tions about her environment. The clari�cation is achieved through the analysis of formal

models | called paradigms | of scienti�c inquiry. Each paradigm speci�es �ve concepts

central to empirical inquiry, namely:

(a) a theoretically possible reality

(b) intelligible hypotheses

(c) the data available about any given reality, were it actual

7

As mentioned in the preface, however, the book is far from exhaustive in treating paradigms with

claim to illuminating aspects of scienti�c discovery. In particular, we do not discuss PAC models of

learning (see Kearns and Vazirani [105] for an excellent overview).
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(d) a scientist

(e) successful behavior by a scientist working in a given, possible reality

One important question about a given paradigm is this: For what classes of possible

realities do there exist scientists who are guaranteed to succeed within any reality drawn

from the class?

In order to apply the resources of computational theory to the problem of inductive

inference, possible realities are often conceived as sets of integers. In turn, the integers

can be conceived as codes for complex objects such as sentences or experimental data.

Hypotheses within our theory are usually taken to be computer programs operating over

integer inputs. A scientist is any system that converts the �nite data sets generated by an

environment into hypotheses about the totality of that environment. We shall mainly be

concerned with scientists whose behavior is simulable by computer. Much of our inquiry

will be devoted to scientists who possess special properties, such as e�ciency, ability to

cope with noisy data, etc.

Through a simple game, we illustrated one criterion of successful scienti�c behavior;

subsequent chapters will investigate a variety of alternatives. It was noted that our theory

distinguishes scienti�c success from the con�dence that a scientist might feel about such

success. Only the former will be at issue here.


