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Abstract. We study the learning power of iterated belief revision methods. Successful

learning is understood as convergence to correct, i.e., true, beliefs. We focus on the issue

of universality: whether or not a particular belief revision method is able to learn every-

thing that in principle is learnable. We provide a general framework for interpreting belief

revision policies as learning methods. We focus on three popular cases: conditioning, lexi-

cographic revision, and minimal revision. Our main result is that conditioning and lexico-

graphic revision can drive a universal learning mechanism, provided that the observations

include only and all true data, and provided that a non-standard, i.e., non-well-founded

prior plausibility relation is allowed. We show that a standard, i.e., well-founded belief

revision setting is in general too narrow to guarantee universality of any learning method

based on belief revision. We also show that minimal revision is not universal. Finally, we

consider situations in which observational errors (false observations) may occur. Given a

fairness condition, which says that only finitely many errors occur, and that every error is

eventually corrected, we show that lexicographic revision is still universal in this setting,

while the other two methods are not.

Keywords: Belief revision, Dynamic Epistemic Logic, Formal learning theory,

Truth-tracking.

Introduction

At the basis of the modeling of intelligent behavior lies the idea that agents
integrate new information into their prior beliefs and knowledge. Intelligent
agents are assumed to be endowed with some learning methods, which allow
them to change their beliefs on the basis of assessing new information. But
how effective is an agent’s learning method in eventually finding the truth?
To make this question precise and to answer it, we borrow concepts from
formal learning theory and adapt them to the commonly used model of
beliefs, knowledge, and belief change, namely that of possible worlds.

A set S of possible worlds, which we will call the state space, together
with a family O of observable propositions, represents the agent’s epistemic
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space, or knowledge state. Note that the sets S and O do not have to be
finite, but are assumed to be at most countable. Intuitively, the epistemic
space represents the uncertainty range of the agent. She can consider some
possible worlds to be more plausible than others. This is represented by a
total preorder on possible worlds, called a plausibility preorder. It captures
the agent’s assessments concerning which of any two worlds s, s′ is more
likely to be the actual one. Such an assessment can obviously be based on
many different factors, in particular on the assessed level of simplicity, or on
consistency with previous observations. An epistemic space together with a
plausibility preorder is called a plausibility space.

In order to represent the dynamic aspects of knowledge and belief we
will use belief revision methods, which, triggered by incoming information,
change the epistemic (plausibility) space. The change can occur through
removal of the states incompatible with the new information, or through a
revision of the plausibility relation. Many belief revision policies proposed
in the literature are formulated, or can be reconstructed, within our setting.
In this paper we investigate three basic policies: conditioning, lexicographic
revision [38,39], and minimal revision [18]. The goal is to see how they can
be viewed as learning methods, and to investigate their learning power, i.e.,
the ability to identify the real world from the incoming information.

We obtain our results by defining learning methods based on belief revi-
sion policies. We show that learning from positive data via conditioning
and lexicographic revision is universal, i.e., that those learning methods
can uniformly identify the real world in the limit, when starting in any epis-
temic space in which the real world is identifiable (via any learning method).
However, that happens only if the agent’s prior plans/dispositions for belief
revision are suitably chosen; and not every such prior is suitable. Further-
more, we show that the most conservative belief revision method, minimal
revision, is not universal.

Our approach brings together methods of formal learning theory [FLT,
see, e.g., 37] and Dynamic Epistemic Logic [DEL, see 7,8,14,22]. The interest
in bringing together learning theory and belief revision theory has appeared
before within at least two lines of research. Firstly, in [30–34] some classical
belief revision policies were treated as learning strategies. Secondly, in [35,36]
the connection has been rooted in the classical AGM framework [1]. Finally,
in [23–27] the set learning paradigm (also called language (or set) learning)
has been connected with epistemic and doxastic logics of belief revision [3,9–
11,13,21]. The present paper is a continuation of the latter line of research,
and is in fact a thorough presentation of results announced in a previously
published extended abstract [5].
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We are chiefly concerned with the counterpart of one of the central notions
in formal learning theory, namely identifiability in the limit [28]. Hence, we
focus on stabilizing to a correct belief.1 We hence investigate the reliability
of mind-changing strategies, i.e., the possibility of converging to an accurate
hypothesis after a finite number of mind-changes.

1. Notation and Basic Definitions

The agent is represented by her epistemic space, i.e., a range of possible
worlds that satisfy relevant observables.

Definition 1. Let S be set of possible worlds and let O ⊆ P(S) be a set
of observable propositions (also called ‘observables’). We will assume that
both sets are possibly infinite, but at most countable, and that there are no
two possible worlds that make exactly the same propositions true. The pair
S = (S,O) is then called an epistemic space.

The epistemic space represents an agent who does not favor any possi-
bility over any other. We break that symmetry by introducing a plausibility
relation, �.2

Definition 2. Let S = (S,O) be an epistemic space, and � ⊆ S × S be a
total preorder.3 The structure BS = (S,O,�) is called a plausibility space.

Since we allow for the epistemic space to be infinite, the question of
well-foundedness of the plausibility space becomes very relevant. We do not
restrict our considerations to well-founded spaces, which we call standard
plausibility spaces due to their popularity in their belief revision literature.

Definition 3. A standard plausibility space BS = (S,O,�) is one whose
plausibility relation � is well-founded (i.e., there is no infinite descending
chain s0 � s1 � . . . � sn � . . ., where ≺ is the strict plausibility relation,
given by: s � t and t �� s).

1The emergence of the stronger epistemic state of irrevocable knowledge can be linked
to a more restrictive kind of identifiability, finite identifiability [see 19,20,27]. It has also
been recently investigated in the context of action learning in dynamic epistemic logic
[16,17].

2Note that we interpret s � t as ‘s is at least as plausible as t’.
3In other words, the binary relation � is total, reflexive, and transitive in S.



920 A. Baltag et al.

1.1. Knowledge and Belief in Epistemic Spaces

Let us briefly discuss the interpretation of knowledge and belief in our set-
ting. Statements about knowledge and belief are not taken to be observables,
but are meaningful within the epistemic spaces. Let us take a plausibility
space BS = (S,O,�). Given a proposition p ⊆ S, we say that the agent
knows that p, Kp, if and only if S ⊆ p. In other words, knowledge is a
global modality—we say that the agent knows p iff p is true in all possible
worlds of the plausibility space BS. In such case we will write BS |= Kp.

As we mentioned before, most of the epistemic doxastic logic and belief
revision literature deals with standard, i.e., well-founded plausibility struc-
tures. The well-foundedness assumption has at least two advantages. Firstly,
it allows us to canonically assign ordinal numbers to states [so-called Spohn
ordinals or ‘degrees of implausibility’, see 39]. Secondly, it leads to a sim-
ple definition of belief, which can then be understood as ‘truth in all the
most plausible worlds’. In any standard plausibility space BS = (S,O,�),
the agent believes p, Bp, if and only if min�S ⊆ p, where for any set
X ⊆ S, min� X is the set of all most plausible worlds in X, defined as
{t ∈ X | t � s for all s ∈ X}.4 For simplicity, given any BS = (S,O,�), we
will write min BS, meaning min� S. Obviously, this definition is equivalent
to min BS ⊆ p in well-founded plausibility spaces.

We do not assume well-foundedness because, as we will show, it prevents
one from learning what one could have learned with a non-well-founded
plausibility relation. To make the belief operator meaningful also in the
non-well-founded cases, we will say that the agent believes that p, Bp, if
and only if ∃w ∀u � w u ∈ p. In such case we will write BS |= Bp.

1.2. Observable Propositions

An observable proposition is identified with the set of those possible worlds
which makes it true. These propositions can be empirically encountered
(observed) by an agent and hence can be viewed as data or evidence for
learning: an agent can witness them. This does not mean that they are all
observable at the same time. We will assume that at each step of learning
consists of only one observation.5

4It is easy to see that, if � is well-founded, then min� X �= ∅ whenever X �= ∅.
5In general, the set of observables can be closed under certain operations, e.g., under

negation (if ‘negative data’ are observed), or under finite intersection (if ‘conjunctions’
are observed). Under the usual possible-world interpretation, O can be viewed as the set
of (atomic) propositions, or, if the stress is put on closure under certain operations (e.g.,
negation or conjunction), as a set encoding the valuation for a relevant logical language.
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The agent revises her beliefs (plausibility space) in response to the obser-
vations. We assume that the agent is inductively presented with an endless
stream of observables.

Definition 4. Let S = (S,O) be an epistemic space.
A data stream is an infinite sequence �O = (O0, O1, . . .) of data Oi ∈ O, i ∈ N.
A data sequence is a finite sequence σ = (O0, . . . , On).

The intuition behind the streams of data is that at stage i, the agent
observes the information in Oi. A data stream captures a possible future
history of observations in its entirety, while a data sequence captures only
a finite part of such a history.

Definition 5. Let �O = (O0, O1, . . .) be a data stream, and let σ =
(σ0, . . . , σn) be a data sequence.
�On stands for the n-th observation in �O.
�O[n] stands for the the initial segment of �O of length n, (O0, . . . , On−1).
set( �O) := {O | O is an element of �O} stands for the set of all data occuring
in �O; we similarly define set(σ), where σ is a finite data sequence.
σ ∗ �O := (σ0, . . . , σn, O0, O2, . . .) is the concatenation of the finite sequence
σ with the infinite stream �O.

A data stream is sound iff it presents only true observables.

Definition 6. A data stream �O is sound with respect to state s iff every
element listed in �O is true in s, i.e., s ∈ �On for all n ∈ N.

A data stream is complete iff it presents every true observable property.

Definition 7. A data stream �O is complete with respect to state s iff every
observable true in s is listed in �O, i.e., for any O ∈ O, if s ∈ O then O = �On

for some n ∈ N.

Let Os stand for the set of all observables that are true in s, i.e., Os =
{O ∈ O | s ∈ O}. A data stream �O is then sound and complete with respect
to state s if and only if Os = set( �O).

In most of this paper we assume the data streams to be sound and com-
plete with respect to the actual world, i.e., all observed data is true, and all
true data will eventually be observed.6 Those are the most favorable con-
ditions for learning (in the limit) the whole truth about the identity of the
actual world. Nonetheless, learning from such data is not trivial, as will be
seen below.

6In computational learning theory, such sound and complete data streams are called
‘texts’ [29] or ‘environments’ [36].
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2. Learning and Belief Revision Methods

In this section, we introduce a formal framework for belief change, learning
functions, and belief revision operators. Depending on the epistemic space, a
learning function responds to a given data sequence with a new conjecture.

Definition 8. Let S = (S,O) be an epistemic space and let σ be a data
sequence. A learning method is a function L that on the input of S and data
sequence σ outputs some set of worlds L(S, σ) ⊆ S, called a conjecture.

Learning methods can have various properties; for instance, the learner
can be forgetful or conservative in revising her conjectures. Below we list
several properties of this type.

Definition 9. A learning method L is:

(1) weakly data-retentive iff L(S, σ) �= ∅ implies L(S, σ) ⊆ σn, for any S and
σ = (σ0, . . . , σn);

(2) strongly data-retentive iff L(S, σ) �= ∅ implies L(S, σ) ⊆ ⋂
i∈{0,...,n}σi,

for any S and σ = (σ0, . . . , σn);

(3) conservative iff ∅ �= L(S, σ) ⊆ p implies L(S, σ) = L(S, σ ∗ p), for any S,
σ, and p ∈ O;

(4) data-driven if it is both conservative and weakly data-retentive;

(5) memory-free iff L(S, σ) = L(S, σ′) implies L(S, σ ∗ p) = L(S, σ′ ∗ p), for
any S and every two data sequences σ, σ′, and every p ∈ O.

For the reader familiar with belief revision theory, let us now briefly com-
pare the above properties with the well-known AGM postulates [1]. Weak
data retention means that the current conjecture always entails the most
recently observed data. If we interpret conjectures as beliefs, this intuitively
corresponds to the AGM Success Postulate. Strong data retention says that
the current conjecture always accounts for all data that have been encoun-
tered till now. Between those two extremes, a learner with bounded memory
could retain some fixed finite amount of data. Conservativity requires that
the agent sustains the same conjecture whenever the new piece of data is
already entailed by her old conjecture. A learning method is memory-free
if, at each stage, the new conjecture depends only on the previous conjec-
ture and the new datum.7 As we will see later, this assumption poses severe

7The latter property was the original intention behind the AGM notation T ∗ ϕ, for
revision of a theory T with a new piece of data ϕ [see 1].
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problems for iterated belief revision. In fact, some standard belief revision
methods implementing the AGM postulates are not memory-free: the new
belief depends in addition on some hidden parameter, namely the old plau-
sibility relation.

We now turn to belief revision methods. In our logical setting, they are
transformations of plausibility spaces triggered by the incoming data.

Definition 10. A one-step revision method is a function R1 that, for any
plausibility space BS and any observable p ∈ O, outputs a new plausibility
space R1(BS, p).

A (iterated) belief revision method R is obtained by iterating a one-step
revision method R1:

R(BS, λ) = BS, for the empty data sequence λ;

R(BS, σ ∗ p) = R1(R(BS, σ), p).

Now we show how to define learning functions in terms of belief revision.
First, one must assign an initial plausibility order to each epistemic space to
turn it into a plausibility space.

Definition 11. Let S = (S,O) be any epistemic space. A prior plausibility
assignment plaus is a map that assigns to S some plausibility relation �
on S, thus converting it into a plausibility space plaus(S) = (S,O,�).

Then one can apply the belief revision operation to each new datum and
recover the resulting belief state as the set of all worlds that are minimal
(most plausible) in the revised plausibility space.

Definition 12. Every belief revision method R, together with a prior plau-
sibility assignment plaus, generates a learning method Lplaus

R , called a belief
revision-based learning method, given by:

Lplaus

R (S, σ) := min R(plaus(S), σ).

The previously defined properties of learning functions (Definition 9) can
be now applied to belief revision methods:

Definition 13. A belief revision method R is called weakly data-retentive
(strongly data-retentive, conservative, or data-driven) iff for any prior plau-
sibility assignment plaus, the induced learning method Lplaus

R is weakly
data-retentive (strongly data-retentive, conservative, or data-driven).

The properties that belief revision methods inherit from their correspond-
ing learning methods can be characterised in terms of belief.
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Proposition 1. Let R be a belief revision method.

(1) R is weakly data-retentive iff R(BS, σ) |= Bσn, for any BS and σ =
(σ0, . . . , σn);

(2) R is strongly data-retentive iff R(BS, σ) |= Bσi, for any BS, σ =
(σ0, . . . , σn), and any i ∈ {0, . . . , n};

(3) If R is conservative then R(BS, σ) |= Bq iff R(BS, σ ∗ p) |= Bq, for any
BS = (S,O,�), σ, q ⊆ S, and p ∈ O, such that R(BS, σ) |= Bp.

Proof. The left-to-right implications of (1) and (2) are trivial, given the
semantics of the belief operator. For the right-to-left implication of (1), let
R be a belief revision method, let S = (S,O), plaus be any plausibility
assignment, and σ = (σ0, . . . , σn). Assume that R(plaus(S), σ) |= Bσn, and
that that Lplaus

R (S, σ) �= ∅. Then minR(plaus(S), σ) ⊆ σn, by hypothesis.
Since minR(plaus(S), σ) = Lplaus

R (S, σ), Lplaus

R (S, σ) ⊆ σn. The proof of the
right-to-left implication in the second assertion is analogous.

For (3), let R be a conservative belief revision method, i.e., Lplaus

R is
conservative, for any plaus. Let us take a plaus, S, σ, and p ∈ O, such
that ∅ �= Lplaus

R (S, σ) ⊆ p, and so Lplaus

R (S, σ) = Lplaus

R (S, σ∗p). It suffices to
show that R(plaus(S), σ) |= Bq iff R(plaus(S), σ ∗ p) |= Bq, for any q ⊆ S.

For the left to right direction, assume that R(plaus(S), σ) |= Bq. Since
Lplaus

R (S, σ) �= ∅, it follows by the definition of B that Lplaus

R (S, σ) ⊆ q. Then,
since Lplaus

R (S, σ) = Lplaus

R (S, σ ∗ p), the definition of belief revision based
learning method yields that Lplaus

R (S, σ ∗ p) = min R(plaus(S), σ ∗ p) ⊆ q,
which by the semantics of B implies that R(plaus(S), σ ∗ p) |= Bq. For the
converse the argument is analogous.

We also define additional, specific to belief revision properties: strong
conservativity and history independence.

Definition 14. A belief revision method R is:

(a) strongly conservative iff for any BS, σ, and p ∈ O such that R(BS, σ) |=
Bp, R(BS, σ) = R(BS, σ ∗ p), i.e., if the new piece of data was already
believed, R does not change the plausibility space at all.

(b) history-independent iff for any BS, p ∈ O, and any data sequences σ, π
we have that if R(BS, σ) = R(BS, π) then R(BS, σ ∗ p) = R(BS, π ∗ p),
i.e., R’s output at any stage depends only on the previous output and
the most recently observed data.

Strongly conservative belief revision methods not only keep the old con-
jecture the same (as in the case of conservative learning methods), but, when
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receiving truthful information, they do not change anything within the plau-
sibility space. As we will see below, the classical belief revision methods are
not necessarily strongly conservative. However, every iterated one-step belief
revision method must be history-independent. History-independent methods
do not require that the agent retains all past events: only the last plausibil-
ity space and the new datum are enough to determine the next plausibility
space. However, as we will show in the next section, the corresponding learn-
ing is not necessarily memory-free.

3. Some Iterated Belief Revision Methods

Below we consider three basic belief revision methods that received consid-
erable attention in dynamic epistemic logic and belief revision theory.

Conditioning. First we focus on the revision by conditioning [38,39], also
called update in DEL [11,13]. This method operates by deleting those worlds
that do not satisfy the newly observed data.

Definition 15. Conditioning, Cond, is an (iterated) belief revision method
based on the one-step belief revision method Cond1 that takes BS = (S,O,�)
and p ∈ O, and outputs a restriction of BS to p, i.e., Cond1(BS, p) =
(Sp,O,�p), where Sp = S ∩ p, and �p = � ∩ (Sp × Sp).

Since conditioning throws out all worlds inconsistent with current infor-
mation, it is easy to see that:

Proposition 2. Cond is strongly data-retentive on sound data streams.

Proof. Let us take any BS = (S,O,�) and a σ = (σ0, . . . , σn) sound with
respect to an s ∈ S. By Proposition 1, it suffices to show that Cond(BS, σ) |=
Bσi for i ∈ {0, . . . , n}. Observe that indeed, for all w such that w � s,
Cond(BS, σ) |= Bσi, for i ∈ {0, . . . , n}. It is the case because σ is sound
with respect to σ, and since all worlds inconsistent with elements of σ have
already been eliminated by Cond.

While conditioning is obviously conservative, it is not strongly conserva-
tive, since new information can rule out some worlds without ruling out all
of the most plausible worlds:

Proposition 3. Cond is not strongly conservative.

Proof. Consider BS = (S,O,�), with O = {p, q}, S = {s, t} such that p =
{s, t}, q = {s}, and s ≺ t (see Figure 1). Then BS |= Bq, but Cond(BS, λ) �=
Cond(BS, λ ∗ q).
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t s

q
p

Figure 1. Plausibility space from the proof of Proposition 3. The arrow

points to the more plausible world, in this case s ≺ t

Lexicographic Revision. Lexicographic revision [38,39], also known as radi-
cal upgrade in Dynamic Epistemic Logic [11,13] does not delete any worlds.
Instead, it ‘promotes’ all the worlds satisfying the new piece of data, making
them more plausible than all the worlds that do not satisfy it; while within
the two zones, the old order is kept the same.

Definition 16. Lexicographic revision, Lex, is a belief revision method
based on the one-step belief revision method Lex1 that takes BS and p ∈ O,
and outputs a revised plausibility space: Lex1(BS, p) = (S,O,�′), where
for all t, w ∈ S, t �′ w iff (t �p w or t �p̄ w or (t ∈ p ∧ w /∈ p)), where:
�p = �∩(p×p), �p̄ = �∩(p̄×p̄), and p̄ stands for the complement of p in S.

It is easy to see that Lex is weakly data-retentive and conservative. How-
ever, it does not satisfy the strong versions of these properties:

Proposition 4. Lex is not strongly data-retentive on arbitrary streams.

Proof. The proof is analogous to that of Proposition 2.

Proposition 5. Lex is strongly data-retentive on sound streams.

Proof. Let us take BS = (S,O,�). Let us also fix s ∈ S and assume that
σ = (σ0, . . . , σn), is sound with respect to s, i.e., BS, s |= ∧

set(σ). It is easy
to see that min Lex(BS, σ) = σ0 ∩ . . . ∩ σn �= ∅. Hence, BS |= B(

∧
set(σ)).

Proposition 6. Lexicographic revision is not strongly conservative.

Proof. Let us consider a plausibility space in Figure 2: BS = (S,O,�),
where S = {s, t, u}, O = {p, q}, and p = {s, u}, q = {s, t}. Moreover, the
plausibility � gives the following order: s ≺ t ≺ u, and that σ = (p). Clearly,
BS |= Bp. However, after receiving σ0 = p, the revision method will still put
world u to be more plausible than t, and therefore BS �= Lex(BS, p).
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u

s

t

qp

Figure 2. Plausibility space from the proof of Proposition 6

Proposition 7. A learning method generated from a history-independent
belief revision method does not have to be memory-free.

Proof. We prove this proposition by showing an example, a belief revi-
sion method R that is history-independent but the learning method that
it induces is not memory-free (see Figure 3). Let R be Lex. Lex is clearly
history-independent, because it is an iterated one-step revision method. To
see that LLex is not memory-free consider the following plausibility space
BS = (S,O,�) with O = {p, q, r} and S = {s, t, u}, such that p = {s, u},
q = {t, u}, r = {s, t, u}. Take σ = (p) and σ′ = (r):

(1) Lex(BS, σ) gives the plausibility order: s ≺ u ≺ t;

(2) Lex(BS, σ
′) gives the plausibility order: s ≺ t ≺ u.

So, LLex(S, σ) = LLex(S, σ′) = {s}. Assume now that the next observation
is q. Then clearly LLex(S, σ ∗ q) = {u}, while LLex(S, σ′ ∗ q) = {t}. Therefore,
for the belief revision method Lex there is a p ∈ O such that: LLex(S, σ) =
LLex(S, σ′) but LLex(S, σ ∗ p) �= LLex(S, σ′ ∗ p). So, LLex is not memory-free.

Minimal Revision. The minimal revision method [18,38], known as conser-
vative upgrade in DEL [11,13], is ‘conservative’ in the sense that it keeps
as much as possible of the old structure. More precisely, the most plausible
states satisfying the new piece of data become the most plausible overall;
while in the rest of the space, the old order is kept the same.

Definition 17. Minimal revision Mini, is a belief revision method based
on the one-step belief revision method Mini1 that takes a plausibility space
BS and a proposition p ∈ O, and outputs a new plausibility space in the
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Figure 3. The transformations of the plausibility space from the proof

of Proposition 7

following way: Mini(BS, p) = BS
′ = (S,O,�′) where for all t, w ∈ S, if

t ∈ min�p and w /∈ min�p, then t �′ w, otherwise t �′ w iff t � w.

Minimal revision is obviously weakly data-retentive—it leads to a belief
that accounts for the last datum. However, it does not retain more than
that. Consider the plausibility space in Figure 4, and the sequence σ = (p, q)
(which is sound with respect to world u). After receiving p the plausibility
order becomes s ≺ t ≺ u. Then q comes in and now our method gives the
order t ≺ s ≺ u. So p is no longer believed after q was given. Therefore:

Proposition 8. Minimal revision is not strongly data-retentive.

Moreover, the minimal revision is conservative: as long as the incoming
information is already believed, beliefs do not change, since the minimal
worlds do not change. In this case we can say even more: nothing about the
plausibility space changes, and so:

Proposition 9. Minimal revision is strongly conservative.

The properties introduced in this section capture some interesting distinc-
tions between belief revision methods. While conditioning and lexicographic
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s

u

t

pq

Figure 4. Example of a plausibility space

revision are quite similar, differing only with respect to their strong reten-
tion capacity, minimal revision is different in two respects. It is not strongly
data retentive, even on sound data streams. In the next section we will
see that this combination of properties negatively affects learning [similar
observations about the interaction of those properties were given in 30,31].

4. Convergence to Truth

Formal learning theory is concerned with reliable learning methods, i.e.,
those that can be relied upon (when observing a sound and complete data
stream) to find the complete truth in the limit no matter what the actual
world is, as long as it is among the possibilities allowed by the initial epis-
temic space S.8 Following the learning-theoretic terminology, we say in this
case that the real world has been identified in the limit.

Definition 18. Given an epistemic space S = (S,O), a world s ∈ S is
identified in the limit by a learning method L if, for every sound and complete
data stream for s, there exists a finite stage after which L outputs the
singleton {s} from then on.

We say that the epistemic space S is identified in the limit by L iff all its
worlds are identified in the limit by L.

An epistemic space S is identifiable in the limit (learnable) if there exists
a learning method L that can identify it in the limit.

Learning methods differ in their learning power. We are interested in the
most powerful among them, those that are universal—they can learn any
epistemic space that is learnable.

8For a discussion of reliability of belief revision methods see [34].
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Definition 19. A learning method L is universal on a class C of epistemic
spaces if it can identify in the limit every epistemic space in C that is iden-
tifiable in the limit. A universal learning method is one that is universal on
the class of all epistemic spaces.

In the remainder of this paper we focus on learning methods that are
generated by iterated belief revision methods. For brevity, we will attribute
the ability of identification in the limit also to belief revision policies.

Definition 20. An epistemic space S is identified in the limit by a belief
revision method R if there exists a prior plausibility assignment plaus such
that the generated learning method Lplaus

R identifies S in the limit.
The epistemic space S is standardly identified in the limit by R if there
exists a well-founded prior plausibility assignment plaus such that Lplaus

R

identifies S in the limit.

Definition 21. A revision method R is universal on a class C of epistemic
spaces if it can identify in the limit every epistemic space in C that is iden-
tifiable in the limit.
R is standardly universal on a class C if it can standardly identify in the
limit every epistemic space in C that is identifiable in the limit.

Our main result is the existence of AGM-like universal belief revision
methods. The main technical difficulty of this part is the construction of
an appropriate prior plausibility order. To define it, we use the concept of
locking sequences introduced in [15] and that of finite tell-tale sets proposed
in [2]. We adjust the classical notion of finite tell-tales, and use it in the
construction of a suitable prior plausibility assignment that, together with
conditioning and lexicographic revision, generates universal learning meth-
ods.

The first observation is that if convergence occurs, then there is a finite
sequence of data that ‘locks’ the corresponding sequence of conjectures on
a correct answer. This finite sequence is called a locking sequence [15].

Definition 22. Let an epistemic space S = (S,O), a possible world s ∈ S,
a learning method L, and a finite data sequence σ, be given. Sequence σ
is called a locking sequence for s and L if s ∈ ⋂

set(σ) and for each data
sequence τ with s ∈ ⋂

set(τ), L(σ ∗ τ) = L(σ) = {s}.

Lemma 1. If learning method L identifies possible world s in the limit, then
there exists a locking sequence for s and L.

Proof. Assume L identifies s without there being a locking sequence for L

and s. We construct in stages a data stream �O for s on which L does not
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converge. Let x1, x2, x3, . . . enumerate elements of (the countable) O that
are true in in s.

Stage 1. The string (x1) is not a locking sequence, so for some τ , and
sound data sequence for s, L((x1) ∗ τ) �= L((x1)). Take (x1) ∗ τ as the
initial segment σ1 of �O.

Stage n+1. Assume that the initial segment σn of �O has been constructed
in stage n. By assumption, the sequence σn ∗ (xn+1) is not a locking
sequence, so there is a sequence τ sound for s such that L(σn ∗ (xn+1) ∗
τ) �= L(σn ∗ (xn+1)). Let σn+1 = σn ∗ (xn+1) ∗ τ .

Because each xi occurs in �O, �O is a sound and complete data stream for s.
But learner L keeps changing value on �O, L does not converge.

The characterization of identifiability in the limit requires the existence
of finite sets that allow drawing a conclusion without the risk of overgener-
alization. The characterization theorem is adapted from [2] and [29].

Lemma 2. Let S = (S,O) be an epistemic space. S is identifiable in the limit
iff there exists a total map D : S → P(O), given by s �→ Ds, such that Ds

is a finite tell-tale for s, i.e.,

(1) Ds is finite,

(2) s ∈ ⋂
Ds,

(3) for any t ∈ S, if t ∈ ⋂
Ds and Ot ⊆ Os, then t = s.

Proof. [⇒] Let S = (S,O) be an epistemic space. Recall that S and O
are at most countable. Assume that S is identifiable in the limit by learning
method L, i.e., for every world s ∈ S and every sound and complete positive
data stream for s, there exists a finite stage after which L outputs the
singleton {s} from then on. By Lemma 1, for every s ∈ S we can take a
locking sequence σs for L and s. For any s ∈ S we define Ds := set(σs).

(1) Ds is finite because locking sequences are finite.

(2) s ∈ ⋂
Ds, because s ∈ ⋂

set(σs).

(3) Assume that there are s, t ∈ S, such that s �= t and for all p ∈ O such
that t ∈ p it is the case that s ∈ p. Take a sound and complete data
stream �O for t, such that for some n ∈ N, �O[n] = σs. Because σs is a
locking sequence for L on s and t ∈ ⋂

set( �O), L converges to s on �O.
Therefore, L does not identify t, a world in S. Contradiction.

[⇐] Assume that S = (S,O) has tell-tales. Let us enumerate S = {s0, s1, . . .}
and define L in the following way:
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L(S, σ) = {si}, where i is least such that Dsi
⊆ set(σ),

if such i exists; else L(S, σ) = ∅.

Assume that �O is a sound and complete data stream for s, and that i is
the least index for s in the enumeration of S. It suffices to show that, for k

large enough, L(S, �O[k]) = {si}. We can fix n large enough so that Dsi
⊆

set( �O[n]). Nevertheless, we cannot conclude that L(S, �O[n]) = {si}, because
there may be (finitely many) other worlds s1, . . . , sm, with m < i distinct
from s, that satisfy the same condition. Take any such sj , j ∈ {0, . . . , m}.
So Dsj

⊆ set( �O[n]) ⊆ Os, but then, by the properties of tale-tales, there is
a p ∈ O such that s ∈ p and sj /∈ p. As �O is sound and complete w.r.t. s,
there exists kj such that p ∈ set( �O[kj ]). We now take k to be the maximum
of all the kj and j, and then s satisfies Ds ⊆ set( �O[k]) ⊆ Os, and continues
to do so for all n > k.

This concludes the proof.

Our aim is to show that belief revision can learn every learnable epistemic
space. The next step is to construct a suitable plausibility order from tell-
tales, but we introduce one additional condition (see (2) in Definition 23,
below).

Definition 23. Let S = (S,O) be an epistemic space, with an injective
map i : S → N, and let D′ be a total map, such that D′ : S → P(O), given
by s �→ D′

s having the following properties:

(1) D′
s is a finite tell-tale for s;

(2) if t ∈ ⋂
D′

s, but Os � Ot, then i(s) < i(t).

We call D′ an ordering tell-tale map, and D′
s an ordering tell-tale set of s.

Lemma 3. Let S = (S,O) be an epistemic space. If S is identifiable in the
limit, then S has an ordering tell-tale map.

Proof. First assume that S = (S,O) is an epistemic space that is iden-
tifiable in the limit. Let i : S → N and j : O → N be injective maps. By
Lemma 2, there exists map D that assigns a tell-tale to each s ∈ S. On the
basis of D, we construct a new map D′ : S → P(O). We proceed step by
step according to the enumeration of S given by i and the enumeration of
O given by j (when i(s) = n we will simply write sn and similarly for j
and p ∈ O). The general idea is to add data to Ds until the at most finitely
many counterexamples to condition (2) in Definition 23 are eliminated.
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(1) For s1 set D′
s1

:= Ds1 .

(2) For sn proceed in the following way. First, for every k < n define:

Pn
k :=

{
{p� | � is smallest s.t. sn ∈ p� and sk �∈ p�} if sk ∈ Dsn

,

∅ otherwise.

Finally, set D′
sn

:= Dsn
∪ (Pn

1 ∪ . . . ∪ Pn
n−1).

We now verify that D′ satisfies Definition 23.

(1) D′
s is finite, because Ds is finite, i(s) = n for some n ∈ N, and there

are only finitely many Pn
k such that k < n, each of them being either a

singleton or the empty set.

(2) sn ∈ ⋂
D′

sn
, because sn ∈ ⋂

Dsn
and sn ∈ ⋂

(Pn
1 ∪ . . . ∪ Pn

n−1).

(3) For any s ∈ S, if D′
s ⊆ Ot ⊆ Os, then Ds ⊆ D′

s ⊆ Ot ⊆ Os, and hence,
by the definition the finite tell-tale set t = s.

It remains to check condition 2: if t ∈ ⋂
D′

s and Os � Ot then i(s)<i(t).
Towards contradiction, assume that t ∈ ⋂

D′
s, Os � Ot, and i(s)≥i(t). If

i(s)=i(t), then Os = Ot, contradiction. If i(s)>i(t), then by the construction
of D′

s, there is a p ∈ D′
s such that s ∈ p and t /∈ p (if Ds ⊆ Ot we added

such p in the process of obtaining D′
s; otherwise it had been already there

to start with). But then t /∈ ⋂
D′

s. Contradiction.

The next step is to use the ordering tell-tales to define a preorder on an
epistemic space.

Definition 24. For s, t ∈ S, define:

s �1
D′ t iff s ∈

⋂
D′

t.

We take �D′ to be the transitive closure of the relation �1
D′ .

We want to show that, indeed, the above construction generates an order,
i.e., that �D′ is reflexive, transitive, and antisymmetric. The latter involves
proving that �D′ includes no proper cycles (see Figure 5).

Definition 25. A proper cycle in �D′ is a sequence of distinct worlds
s1, . . . , sn, with n ≥ 2, and such that:

(1) for all i = 1, . . . , n − 1, si+1 ∈ ⋂
D′

si
,

(2) s1 ∈ ⋂
D′

sn
.
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s1 s2

s4

s6 s3

s5

Ds1

Ds6 Ds2

Ds3Ds5

Ds4

Figure 5. A visualization of a proper cycle of length 6, here we write D′
si

instead of
⋂

D′
si

Lemma 4. For any identifiable epistemic space S and any ordering tell-tale
map D′, the relation �D′ is an order, i.e., �D′ is reflexive, transitive, and
antisymmetric.

Proof. The fact that �D′ is a preorder is trivial: reflexivity follows from
the fact that s is always in

⋂
D′

s, and transitivity is imposed by construction
(by taking the transitive closure).

We need to prove that �D′ is antisymmetric. In order to do that we will
show (by induction on n) that �D′ does not contain proper cycles of any
length n ≥ 2.

(1) For the initial step (n = 2): Suppose we have a proper cycle of length
2. As we saw, this means that there exist two states s1, s2 such that
s1 �= s2, s2 ∈ ⋂

D′
s1

, and s1 ∈ ⋂
D′

s2
.

(a) If Os1 ⊆ Os2 , then since s1 ∈ ⋂
D′

s2
, so s1 = s2, (by the fact

that D′
s2

is a tell-tale for s2). Similarly, if Os2 ⊆ Os1 , then since
s2 ∈ ⋂

D′
s1

, we again have that s2 = s1. Contradiction.
(b) Os1 � Os2 and Os2 � Os1 . From the assumption that s2 ∈ ⋂

D′
s1

,
and that Os1 � Os2 , we can infer (by Condition 2 of Definition
23), that i(s1) < i(s2). But, in the same way (from s1 ∈ ⋂

D′
s2

,
and Os2 � Os1), we can also infer that i(s2) < i(s1). Putting these
together, we get i(s1) < i(s2) < i(s1). Contradiction.

(2) For the inductive step (n + 1): Suppose that there is no proper cycle
of length n, and, towards contradiction, that s1, s2, ..., sn+1 is a proper
cycle of length n + 1. We consider two cases:
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Case 1: There exists k with 1 ≤ k ≤ n such that Osk
⊆ Osk+1 . Since

sk ∈ ∩D′
sk−1

, it must be that sk+1 ∈ ∩D′
sk−1

. Therefore, the
sequence s1, . . . , sk−1, sk+1, . . . (obtained by deleting sk from the
above proper cycle of length n + 1) is also a (shorter) proper cycle
(of length n). Contradiction.

Case 2: Osk
� Osk+1 , for all 1 ≤ k ≤ n. So, for all 1 ≤ k ≤ n, sk+1 ∈ ⋂

D′
sk

.
By Condition 2 of Definition 23, it follows that i(sk) < i(sk+1), for
all k = 1, . . . , n, and hence i(s1) < i(sn+1). But s1 ∈ ⋂

D′
sn

and
Osn+1 � Os1 (since otherwise s1 ∈ ∩D′

sn
and s1, . . . , sn would give

a proper cycle of length n), hence is1 > isn+1 . Contradiction.

Let us now show that �D′ , when used by the conditioning revision
method, guarantees convergence to the right belief whenever the underlying
epistemic space is identifiable in the limit.

Theorem 1. The conditioning belief revision method (Cond) is universal.

Proof. Obviously, if S is identifiable in the limit by conditioning, then S is
identifiable in the limit. We therefore focus on the other direction, i.e., we
show that if S is identifiable in the limit by any learning method, then it is
identifiable in the limit by conditioning.

By Lemma 3 we know there exists an ordering tell-tale map for S and by
Lemma 4, the corresponding �D′ is a (partial) order on S. By the Order-
Extension Principle, there exists a total order � on S such that, for all
s, t ∈ S, it is the case that s �D′ t implies s � t.9

It remains to show that S is identifiable in the limit by the learning
method generated from the conditioning belief revision method and the
prior plausibility assignment �. Let BS = (S,O,�) and let us take any
s ∈ S and the corresponding D′

s. Since s ∈ ⋂
D′

s, it follows that for every
sound and complete positive data stream �O for s, there exists n ∈ N such
that D′

s ⊆ set( �O[n]). Let Cond(BS, �O[n]) = (S′,O,�′). Our aim is now to
demonstrate that min�′ S′ = {s}. By the antisymmetry of the order relation
� and hence also of �′, the minimal element of S′ is unique, so it is sufficient
to show that s ∈ min� S′. For this, let t ∈ S′ be arbitrary. We need to show
that s � t. Since t ∈ S′, we get that D′

s ⊆ set( �O[n]) ⊆ Ot, so, by Definition
23, s �D′ t, and hence s � t. It remains to show that Cond stabilizes on
{s}. Observe that �O is sound with respect to s, and therefore no further

9In general, the proof of this principle uses the Axiom of Choice. But here we only need
the special case in which the support set S is countable, and this special case is provable
without the Axiom of Choice.
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s1

s3

s2

qp

Figure 6. Epistemic space from the proof of Theorem 3. It is impossible

to find a plausibility order that would allow learnability via minimal

belief revision method, Mini

information from �O can eliminate s (because conditioning is conservative),
and hence for any future data the set of minimal elements will remain {s}.

Theorem 2. The lexicographic belief revision method (Lex) is universal.

The proof is analogous to the proof of Theorem 1. Within our learning
setting lexicographic revision with true information does exactly what con-
ditioning does. The only difference is that the rest of the doxastic structure
might not stabilize, but only the minimal elements stabilize.

Theorem 3. The minimal belief revision method (Mini) is not universal.

Proof. Let us give a counter-example, an epistemic space that is identi-
fiable in the limit, but is not identifiable by the minimal revision method
(see Figure 6). Let S = (S,O), where S = {s1, s2, s3}, O = {p, q}, and
p = {s1, s3}, q = {s2, s3}. The epistemic space S is identifiable in the limit
by the conditioning revision method: just assume the ordering s1 ≺ s2 ≺ s3.
However, there is no ordering that allows identification in the limit of S
by the minimal revision method. If s3 occurs in the ordering before s1 (or
before s2), then the minimal revision method fails to identify s1 (s2, respec-
tively). If both s1 and s2 precede s3 in the ordering then the minimal revision
method fails to identify s3 on any data stream consisting of singletons of
propositions from s3. On all such data streams for s3 the minimal state will
alternate between s1 and s2, or stabilize on one of them. The last case is
that at least one of s1 and s2 is equi-plausibile to s3. In such case s3 is not
identifiable because for any single proposition from s3 there is more than
one possible world consistent with it.
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s0 s1 s2 s3 s4

p0 p1 p2 p3 p4
. . .

Figure 7. Epistemic space from the proof of Theorem 4. The grey arrows

show the non-well-founded plausibility order appropriate for successful,

non-standard learning

Theorem 4. No conservative belief revision method is standardly universal.

Proof. There is an epistemic space S that is identifiable in the limit by a
learning method, but is not standardly identified in the limit by any con-
servative belief revision method. The following epistemic space constitutes
such a counter-example. Let S = (S,O) such that S = {sn | n ∈ N},
O = {pi | i ∈ N}, and for any k ∈ N, pk = {si | 0 ≤ i ≤ k}, see Figure 7.

S is identifiable in the limit10 by the following learning method L:

L(S, σ) = {sn} iff n is the largest such that sn ∈
⋂

set(σ).

Let us now assume (towards contradiction) that S is standardly identifi-
able in the limit by a conservative belief revision method R, i.e., there exists
a well-founded total preorder � on S, such that the learning method L�

R

generated from R and � identifies S in the limit and is conservative.
If � is well-founded we can choose some minimal sk ∈ min� S and set

L�
R(S, λ) = {sk}, where λ is the empty data sequence. Take now some m > k,

and notice that Osm
⊂ Osk

(by our construction of S). Let �O be a sound
and complete data stream for sm. By assumption, L�

R identifies sm in the
limit, hence there must exists some k such that L�

R(S, �O[k]) = {sm}. But
since Osm

⊆ Osk
, the stream �O is sound for sk as well: set( �O[n]) ⊆ Osk

, for
all n ∈ N.

We prove by induction that sk ∈ L�
R(S, �O[n]) for all n ∈ N. Note that

this leads to contradiction, namely to sk ∈ L�
R(S, �O[n]) = {sm}, and hence

10And, as a consequence of our previous results, it is identifiable in the limit by condi-
tioning. Indeed, it is enough take the prior plausibility given by: sn � sm iff n ≥ m. But
notice that � is not well-founded, so this is not a standard prior.
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to sk = sm, which contradicts our choice of m > k. The proof by induction
goes as follows. The base case is already established, since sk ∈ L(S, λ) =
L�

R(S, �O[0]). For the inductive case, let us assume that sk ∈ L�
R(S, �O[n]) for

some n, then set( �O[n + 1]) ⊆ Osk
and L is conservative to conclude that

sk ∈ L�
R(S, �O[n] ∗ �On+1) = L�

R(S, �O[n + 1]).

The above result concerns the type of preorders that facilitate identifia-
bility in the limit. We show that for universality results our non-standard
setting (involving non-well-founded plausibility orders) is essential: assum-
ing that AGM-like belief revision must be conservative, no such method is
universal with respect to well-founded plausibility spaces.

Corollary 1. No AGM-like belief revision method is standardly universal.

5. Learning from Positive and Negative Data

One may wonder what would happen if the revision process was governed
not only by arbitrary sets of observables, but by observables which are closed
under certain logical operations. One simple adjustment of the set O is to
assume its closure on negation.11

First let us extend our framework to account for situations in which both
positive and negative data can be observed.

Definition 26. An epistemic space S = (S, O) is negation-closed if the set
O of all data is negation-closed, i.e., if for every p ∈ O there exists some
p ∈ O such that p = S \ p (i.e., for every s ∈ S, s ∈ p iff s �∈ p).

Proposition 10. Conditioning and lexicographic revision generate stan-
dardly universal learning methods on the class of negation-closed epistemic
spaces.

Proof. We prove that every negation-closed epistemic space S (with O and
S countable) is identifiable in the limit by conditioning and by lexicographic
revision.

Let us assume that S is countable and negation closed. In fact, any ω-type
order � on S gives a suitable (well-founded) prior plausibility assignment.
Let us take an s ∈ S. Since � is ω-type it is well-founded, so there are only
finitely many worlds that are more plausible than s. For each such world
t ≺ s we collect one Ot ∈ O such that s ∈ Ot but t �∈ Ot or vice versa. Such

11In a follow up work we will consider closure on finite intersections, which will allow
us to view learnability in epistemic spaces as topological properties [see 4,6].
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s1s2

s4

s3

qp

r

Figure 8. Epistemic space from the proof of Proposition 11

an Ot must exist, since s �= t implies that either there exists some O ∈ O
such that s ∈ O and t /∈ O or there exists some O′ ∈ O such that t ∈ O′ and
s �∈ O′. In the first case, we put Ot = O, while in the second case we put
Ot = O.) Then the data set {Ot | t ≺ s} is finite. For every data stream �O
that is sound and complete with respect to s, there must exist a stage n ∈ N

by which all data in {Ot | t ≺ s} have been observed. After this stage, all
worlds that are more plausible than s will have been deleted (in the case
of conditioning) or will have become less plausible than s (in the case of
lexicographic revision), so from then on the (only) most plausible state is s.
Hence conditioning and lexicographic revision identify any world s ∈ S in
the limit.

Proposition 11. Minimal revision is not universal on negation-closed
spaces.

Proof. We show a negation-closed epistemic space that is identifiable in the
limit, but is not identifiable in the limit by the minimal revision method.
We take S = (S,O), where: S = {s1, s2, s3, s4} and O = {p, q, r}, with
p = {s2, s4}, q = {s3, s4}, and r = {s1, s2, s3, s4}, see Figure 8.

The epistemic space S is identifiable in the limit by Cond, just assume
the plausibility order s1 ≺ s2 ≺ s3 ≺ s4. However, there is no plausibility
order that allows identification in the limit of S by the minimal revision
method. Whichever ordering is assumed, the least plausible element will not
be identifiable. It is so because each piece of data consistent with s is also
consistent with one of the ≺-smaller sets.
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6. Erroneous Information

With the introduction of negative information, we can now allow for occa-
sional observational errors, and for their corrections. To consider erroneous
data we now give up the soundness of data streams, i.e., we allow that the
learner can observe data that may be false in the real world. In order to
still give the agent a chance to learn the real world, we need to impose some
limitation on errors. We do this by requiring the data streams to be ‘fair’.12

Definition 27. Let S = (S,O) be a negation-closed epistemic space. A
stream �O of data from O is fair with respect to the world s if �O contains
only finitely many errors and every such error is eventually corrected in �O,
in other words:

(1) �O is complete with respect to s,

(2) there is n ∈ N such that for all k ≥ n, s ∈ Ok, and

(3) for every i ∈ N such that s �∈ Oi, for some k > i, Ok = Oi.

Unsurprisingly, conditioning (which assumes absolute veracity of the new
observations) is no longer a good strategy. If erroneous observations are
possible, then eliminating worlds that do not satisfy these observations is
risky and irrational.

Proposition 12. Conditioning and minimal revision are not universal for
fair streams.

Proof. Conditioning does not tolerate errors at all. On any �Oi such that
s /∈ �Oi conditioning will remove s and there is no way to revive it. Minimal
revision, as it has been shown, is not universal on negation-closed epistemic
spaces even with respect to sound and complete data streams, which are a
special case of fair streams.

We will demonstrate that lexicographic revision deals with errors in a
skillful manner. Before we get to that we introduce and discuss the notion
of propositional upgrade [which is a special case of generalized upgrade, see
12]. Such an upgrade is a transformation of a plausibility space that can
be given by any finite sequence of mutually disjoint propositional sentences
x1, . . . , xn. The corresponding propositional upgrade (x1, . . . , xn) acts on a
plausibility space BS = (S,O,�) by changing the preorder � as follows: all

12Notions defined in Section 4 (identifiability in the limit, universality, etc.) are similar
for fair data streams.
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worlds that satisfy x1 become less plausible than all worlds satisfying x2, all
worlds satisfying x2 become less plausible than all x3 worlds, etc., up to the
worlds which satisfy xn. Moreover, for any k such that 1 ≤ k ≤ n, among
the worlds satisfying xk the old order � is kept the same. In particular,
lexicographic revision is a special case of such propositional upgrade, (¬p, p).
Lemma 5. The class of propositional upgrades is closed under sequential
composition.

Proof. We need to show that the sequential composition of any two
propositional upgrades gives a propositional upgrade. Let us take X :=
(x1, . . . , xn) and Y := (y1, . . . , ym). The sequential composition X ∗ Y is
equivalent to the following propositional upgrade:

(x1 ∧ y1, . . . , xn ∧ y1, x1 ∧ y2, . . . , xn ∧ y2, . . . , . . . , x1 ∧ ym, . . . , xn ∧ ym).

To show this, take an arbitrary plausibility space BS = (S,O,�) and upgrade
on X and Y successively. First, we upgrade on X, to obtain the new preorder
�X , in which all worlds satisfying x1 are less plausible than all x2-worlds,
etc., and within each such partition the old order � is kept the same. Now,
to this new plausibility space we apply the second upgrade, Y , obtaining
the new preorder �XY , in which all y1-worlds are less plausible than all y2-
worlds, etc. However, since the upgrade Y has been applied to the preorder
�X we also know that the new preorder �XY has the following property: for
each j, such that 1 ≤ j ≤ m, within the partition given by yj , all x1-worlds
are less plausible than all x2-worlds, etc. At the same time, in each j and
k such that 1 ≤ j ≤ m and 1 ≤ k ≤ n the preorder � is maintained in the
partition (yj ∧ xk). Thus, �XY has the following structure:

(x1 ∩ y1) �XY . . . �XY (xn ∩ y1) �XY

(x1 ∩ y2) �XY . . . �XY (xn ∩ y2) �XY . . . �XY . . . �XY (xn ∩ ym),

Moreover, within each such partition, the old preorder � is kept the same.
The final observation is that the above setting can be obtained directly

by the propositional upgrade of the following form:

(x1 ∧ y1, . . . , xn ∧ y1, x1 ∧ y2, . . . , xn ∧ y2, . . . , x1 ∧ ym, . . . , xn ∧ ym).

Now we are ready to show that lexicographic revision is well-behaved on
fair streams.

Proposition 13. Lexicographic revision generates a standardly univer-
sal belief revision-based learning method for fair streams on the class of
negation-closed epistemic spaces.
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Proof. First, recall that lexicographic revision, Lex, is standardly universal
for sound and complete streams on negation-closed spaces. It is left to show
that Lex retains its power on fair streams. It is sufficient to show that lex-
icographic revision is ‘error-correcting’, i.e., that the effect of revising with
the stream (p∗σ ∗p) is exactly the same as with the stream (σ ∗p), where σ
is any sequence of observables. The proof uses the properties of sequential
composition for propositional upgrade.

Let us assume that length(σ) = n. In terms of generalized upgrade we
need to demonstrate that the sequential composition

(¬p, p)(¬σ1, σ1) . . . (¬σn, σn)(p,¬p)

is equivalent to

(¬σ1, σ1) . . . (¬σn, σn)(p,¬p).

From Lemma 5 we know that propositional upgrade is closed under
sequential composition. Hence, in the equivalence to be shown, we can
replace the composition (¬σ1, σ1) . . . (¬σn, σn) by only one generalized
upgrade, which we denote by (x1, . . . , xm). Now, we claim that: (¬p, p)(x1,
. . . , xm)(p,¬p) is equivalent to: (x1, . . . , xm)(p,¬p).

By the proof of Lemma 5, the composition (x1, . . . , xn)(p,¬p) has the
following form:

(x1 ∧ p, . . . , xn ∧ p, x1 ∧ ¬p, . . . , xn ∧ ¬p).

Accordingly, the other upgrade, (¬p, p)(x1, . . . , xn)(p,¬p), has the following
form:

(¬p ∧ x1 ∧ p, p ∧ x1 ∧ p, . . . ,¬p ∧ xn ∧ p, p ∧ xn ∧ p,¬p ∧ x1 ∧ ¬p, p ∧ x1

∧¬p, . . . ,¬p ∧ xn ∧ ¬p, p ∧ xn ∧ ¬p).

Let us observe that some of the terms in the above upgrade are inconsis-
tent. We can eliminate them since they correspond to empty subsets of the
plausibility space. We obtain:

(x1 ∧ p, . . . , xn ∧ p, x1 ∧ ¬p, . . . , xn ∧ ¬p).

The observation that the two propositional upgrades turn out to be the same
concludes the proof.

7. Conclusions and Perspectives

We have considered iterated belief revision policies of conditioning, lexico-
graphic, and minimal belief revision. We have identified certain features of
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those methods relevant in the context of iterated revision: data-retention
and conservativity turn out to be especially important. We defined learning
methods based on those revision policies and have shown how the aforemen-
tioned properties influence the learning process. Throughout the paper we
have been mainly interested in convergence to the actual world on the basis
of infinite data streams. In the setting of positive, sound and complete data
streams we have exhibited that conditioning and lexicographic revision gen-
erate universal learning methods. Minimal revision fails to be universal, and
the crucial property that makes it weaker is its strong conservativity. More-
over, we have shown that the full power of learning cannot be achieved when
the underlying prior plausibility assignment is assumed to be well-founded.
In the case of positive and negative information, both conditioning and lex-
icographic revision are universal. Minimal revision again is not. Finally, in
the setting of fair streams (containing a finite number of errors that all get
corrected later in the stream) lexicographic revision again turns out to be
universal. Both conditioning and minimal revision lack the ‘error-correcting’
property.

Future and on-going work consists of multi-level investigation of the rela-
tionship between formal learning theory, belief revision theory, and DEL.
There surely are many links still to be found. What seems to be especially
interesting is the multi-agent extension of our results. The interactive aspect
would probably be appreciated in formal learning theory, where the single-
agent perspective dominates. Another way to extend the framework is to
allow revision with more complex formulae. This would link to the AGM
approach, and to the philosophical investigation into the process of scien-
tific inquiry, where possible realities have a more ‘theoretical’ character.
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